{"created":"2023-06-19T08:09:05.196287+00:00","id":168,"links":{},"metadata":{"_buckets":{"deposit":"3ac30552-c0ab-4f16-b0ad-b5e70142247c"},"_deposit":{"created_by":15,"id":"168","owners":[15],"pid":{"revision_id":0,"type":"depid","value":"168"},"status":"published"},"_oai":{"id":"oai:edo.repo.nii.ac.jp:00000168","sets":["2:4"]},"author_link":["19"],"item_10002_biblio_info_7":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicIssueDates":{"bibliographicIssueDate":"2011-03-11","bibliographicIssueDateType":"Issued"},"bibliographicIssueNumber":"21","bibliographicPageEnd":"266","bibliographicPageStart":"259","bibliographic_titles":[{"bibliographic_title":"情報と社会"},{"bibliographic_title":"Communication & Society","bibliographic_titleLang":"en"}]}]},"item_10002_description_5":{"attribute_name":"抄録","attribute_value_mlt":[{"subitem_description":"Basis Quantum Monte Carlo(BQMC)法に対してImportance Sampling を導入した。Importance Sampling の重み関数としては通常のBQMC 法の結果から得られる波動関数を利用して定式化を行った。具体的な遷移確率として,拡散項とフェルミ孔項にQuantum force によるドリフト移動が反映され,分岐項には局所エネルギーが含まれる結果が得られた。さらにImportance Sampling を行うBQMC 法の繰り返しの式が得られた。この結果は,BQMC法においてより高い精度で計算を行うための重要な基礎となる。\n","subitem_description_type":"Abstract"}]},"item_10002_publisher_8":{"attribute_name":"出版者","attribute_value_mlt":[{"subitem_publisher":"江戸川大学"}]},"item_10002_relation_12":{"attribute_name":"論文ID(NAID)","attribute_value_mlt":[{"subitem_relation_type_id":{"subitem_relation_type_id_text":"40018786707","subitem_relation_type_select":"NAID"}}]},"item_10002_source_id_9":{"attribute_name":"ISSN","attribute_value_mlt":[{"subitem_source_identifier":"1341-5832","subitem_source_identifier_type":"ISSN"}]},"item_creator":{"attribute_name":"著者","attribute_type":"creator","attribute_value_mlt":[{"creatorAffiliations":[{"affiliationNameIdentifiers":[{"affiliationNameIdentifier":"","affiliationNameIdentifierScheme":"ISNI","affiliationNameIdentifierURI":"http://www.isni.org/isni/"}],"affiliationNames":[{"affiliationName":"","affiliationNameLang":"ja"}]}],"creatorNames":[{"creatorName":"Toru, YAGI","creatorNameLang":"en"},{"creatorName":"八木, 徹","creatorNameLang":"ja"},{"creatorName":"ヤギ, トオル","creatorNameLang":"ja-Kana"}],"familyNames":[{"familyName":"Toru","familyNameLang":"en"},{"familyName":"八木","familyNameLang":"ja"},{"familyName":"ヤギ","familyNameLang":"ja-Kana"}],"givenNames":[{"givenName":"YAGI","givenNameLang":"en"},{"givenName":"徹","givenNameLang":"ja"},{"givenName":"トオル","givenNameLang":"ja-Kana"}],"nameIdentifiers":[{"nameIdentifier":"19","nameIdentifierScheme":"WEKO"}]}]},"item_files":{"attribute_name":"ファイル情報","attribute_type":"file","attribute_value_mlt":[{"accessrole":"open_date","date":[{"dateType":"Available","dateValue":"2014-09-05"}],"displaytype":"simple","filename":"24_八木.pdf","filesize":[{"value":"2.0 MB"}],"format":"application/pdf","licensetype":"license_note","mimetype":"application/pdf","url":{"label":"Importance Sampling を用いたBasis Quantum Monte Carlo 法の定式化","url":"https://edo.repo.nii.ac.jp/record/168/files/24_八木.pdf"},"version_id":"c91483b3-c164-499c-9931-07299e4534aa"}]},"item_keyword":{"attribute_name":"キーワード","attribute_value_mlt":[{"subitem_subject":"量子モンテカルロ法|Basis Quantum Monte Carlo|Importance Sampling","subitem_subject_scheme":"Other"}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"jpn"}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourcetype":"departmental bulletin paper","resourceuri":"http://purl.org/coar/resource_type/c_6501"}]},"item_title":"Importance Sampling を用いたBasis Quantum Monte Carlo 法の定式化","item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"Importance Sampling を用いたBasis Quantum Monte Carlo 法の定式化"}]},"item_type_id":"10002","owner":"15","path":["4"],"pubdate":{"attribute_name":"公開日","attribute_value":"2014-09-05"},"publish_date":"2014-09-05","publish_status":"0","recid":"168","relation_version_is_last":true,"title":["Importance Sampling を用いたBasis Quantum Monte Carlo 法の定式化"],"weko_creator_id":"15","weko_shared_id":-1},"updated":"2024-05-16T02:53:39.734876+00:00"}