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1. Introduction
Majorization is a classical subject in mathematics, a well known result related to double stochastic 

matrices and permutation matrices is revealed by Birkhoff in 1946. Optimizations related to majorization 

and its partial ordered generalization are also developed, for example, see [2] and [6]. On the other hand, 

ordered weights optimization problems, known as OWA(Ordered Weighted Average), and OM(Ordered 

Median) are researched independently ([3]). The complexes of these optimization problems vary from 

trivial case ([2]) to NP-hard ([3]) based on their structures. Our motivation is investigating the relation 

between the ordered weight problems and their underlined structures. One key factor of structure is 

symmetry. Problems related to majorization usually guarantee some symmetries, while values in 

problems titled with OWA or OM vary with permutation. The manuscript is a first step, mainly in a 

review stage and searching for possible research direction.

There are a lot of applications related to these concepts. Majorization as a Lorens curve (1906) ([5]) 

can be used as a measure of economics distribution or wealth inequality, which is also global hot topic 

now. Majorization for partial ordered sets can be applied to source allocation ([1]). OWA and OM are 

formulations for facilities allocation. Some special weights for OWA or OM are also unication description 

of fundamental statistics in data analysis, which we will mention in next section.

The manuscript is organized as follows. After basic concepts introduction in next section, in Section 

3 we treate problems related to special ordered set, principle majorization ideals ([2]). We discuss 

general ordered sets and related majorization problems in Section 4 ([1]). In final section, we show 

general ordered weighted average problems.
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2. Definitions and preliminary

We begin with two basic concepts.
For x, y ∈ Rn we say that x is majorized by y, and write x  y, if

k
j=1

x[j] ≤
k

j=1

y[j] for k = 1, 2, · · · , n− 1, (2.1)

n
j=1

x[j] =
n

j=1

y[j], (2.2)

here x[j] denotes the jth largest component of x.
Given a weight w = (w1, w2, · · · , wn), data or function x = (x1, x2, · · · , xn), an OWA or

OM formulation here is defined as maximization or minimization the following

n
i=1

wixi (2.3)

s.t. x1 ≥ x2 ≥ · · · ≥ xn. (2.4)

Note, let w = (1, 0, · · · , 0), or w = (1/n, 1/n, · · · , 1/n), we obtain minimum or average
of x, maximum or median of x can been done in similar ways.

3. Principle majorization ideals

Now we introduce the relation between majorization and OWA.
Let

Dn = { x ∈ Rn : x1 ≥ x2 ≥ · · · ≥ xn }.
Given a vector b ∈ Rn, a polytope majorized by b on Dn is defined as

M(b) = { x ∈ Dn : x  b }. (3.1)

As indicated in [2], majorization is reflexive and transitive on Rn, it is also antisymmetry
on Dn. Therefore, majorization is partial ordered, or poset on Dn. And M(b) is called
principal majorization ideal.

Now, we formulate our first OWA optimization problem

max
n

j=1

wjxj s. t. x ∈ M(b). (3.2)

Note by definition, the above problem can also be described as

max
n

j=1

wjx[j] s. t. x ∈ M(b). (3.3)

By symmetry, the above problem is equivalent to

max
n

j=1

wjx[j] s. t. x  b. (3.4)
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We restrict the problem on M(b) because it is convenient when consider the structure of optimal 

solution.

The optimization problem

We restrict the problem on M(b) because it is convenient when consider the structure of
optimal solution.

The optimization problem is trivial if w is Schur-convex, i.e., wTx ≤ wTy whenever
x  y, b is an optimal solution.

Note also that optimization problem

max
n

j=1

wjxj s. t. x  b (3.5)

can be achieved by greedy algorithm. It is also the result of submodular property ([4]). If
w1 ≥ w2 ≥ · · · ≥ wn, above problems are coincided, the solution is bπ, which is a permu-
tation of b such that b1 ≥ b2 ≥ · · · ≥ bn

G. Dahl ([2]) investigated the extreme points structure of M(b). To avoid some techni-
cals, b is assumed to satisfy b1 > b2 > · · · > bn. Note M(b) is determined by two sets of
inequalities, the majorization inequalities (2.1) and (2.2), ordered inequalities (2.4). The
elements (x1, x2, · · · , xn) of extreme point x is partitioned into some ordered blocks, blocks
are separated when majorization inequalities take equalities. Within each block, ordered
inequalities take equalities, i.e., elements in each block have same value.

The following notation is the weight averaged on a block having indexes from i to j
(1 ≤ i ≤ j ≤ n) of an extreme point in M(b),

ŵi,j = (1/(j − i + 1))

j
k=i

wk

j
r=i

br. (3.6)

A dynamic programming is also given (here w are arbitrary weights, i.e., we do not need
that wi ≥ wj whenever i < j):

Dynamic Algorithm for M(b)
1. Let µ0 = 0.
2. For k = 1, 2, · · · , n calculate µk = max{µt−1 + ŵt,k : t = 1, 2, · · · , k}.

µn is the required optimization value. (The above DP is given in [2], we correct some
misprints.)

Note also that if w1 ≤ w2 ≤ · · · ≤ wn, i.e., Schur concave function, only one block, the
optimal solution is: all components are equal to 1/n

n
j=1 bj.

4. Majorization for partially ordered sets

Recently more general partially ordered sets related to maorization has been researched
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ŵi,j = (1/(j − i + 1))

j
k=i

wk

j
r=i

br. (3.6)

A dynamic programming is also given (here w are arbitrary weights, i.e., we do not need
that wi ≥ wj whenever i < j):

Dynamic Algorithm for M(b)
1. Let µ0 = 0.
2. For k = 1, 2, · · · , n calculate µk = max{µt−1 + ŵt,k : t = 1, 2, · · · , k}.
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µn is the required optimization value. (The above DP is given in [2], we correct some
misprints.)

Note also that if w1 ≤ w2 ≤ · · · ≤ wn, i.e., Schur concave function, only one block, the
optimal solution is: all components are equal to 1/n

n
j=1 bj.

4. Majorization for partially ordered sets

Recently more general partially ordered sets related to maorization has been researched
([1]). We first give the definition and review the main results.

Consider a partially set (poset) (P,≤P ) on a set wirh n elements. A linear extension of
P is a linear order ≤L (on P ) such that if i ≤P j then i ≤L j. An ideal of poset (P,≤P )
is a set I ⊆ P such that a ∈ I and b ≤P a implies b ∈ I. And a real-valued function f
defined on P is P -monotone if

f(i) ≥ f(j) whenever i ≤P j. (4.1)

3

of an extreme point in M(b),

� (3.6)

A dynamic programming is also given (here

We restrict the problem on M(b) because it is convenient when consider the structure of
optimal solution.

The optimization problem is trivial if w is Schur-convex, i.e., wTx ≤ wTy whenever
x  y, b is an optimal solution.

Note also that optimization problem

max
n

j=1

wjxj s. t. x  b (3.5)

can be achieved by greedy algorithm. It is also the result of submodular property ([4]). If
w1 ≥ w2 ≥ · · · ≥ wn, above problems are coincided, the solution is bπ, which is a permu-
tation of b such that b1 ≥ b2 ≥ · · · ≥ bn

G. Dahl ([2]) investigated the extreme points structure of M(b). To avoid some techni-
cals, b is assumed to satisfy b1 > b2 > · · · > bn. Note M(b) is determined by two sets of
inequalities, the majorization inequalities (2.1) and (2.2), ordered inequalities (2.4). The
elements (x1, x2, · · · , xn) of extreme point x is partitioned into some ordered blocks, blocks
are separated when majorization inequalities take equalities. Within each block, ordered
inequalities take equalities, i.e., elements in each block have same value.

The following notation is the weight averaged on a block having indexes from i to j
(1 ≤ i ≤ j ≤ n) of an extreme point in M(b),
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2. Definitions and preliminary

We begin with two basic concepts.
For x, y ∈ Rn we say that x is majorized by y, and write x  y, if

k
j=1

x[j] ≤
k

j=1

y[j] for k = 1, 2, · · · , n− 1, (2.1)

n
j=1

x[j] =
n

j=1

y[j], (2.2)

here x[j] denotes the jth largest component of x.
Given a weight w = (w1, w2, · · · , wn), data or function x = (x1, x2, · · · , xn), an OWA or

OM formulation here is defined as maximization or minimization the following

n
i=1

wixi (2.3)

s.t. x1 ≥ x2 ≥ · · · ≥ xn. (2.4)

Note, let w = (1, 0, · · · , 0), or w = (1/n, 1/n, · · · , 1/n), we obtain minimum or average
of x, maximum or median of x can been done in similar ways.

3. Principle majorization ideals

Now we introduce the relation between majorization and OWA.
Let

Dn = { x ∈ Rn : x1 ≥ x2 ≥ · · · ≥ xn }.
Given a vector b ∈ Rn, a polytope majorized by b on Dn is defined as

M(b) = { x ∈ Dn : x  b }. (3.1)

As indicated in [2], majorization is reflexive and transitive on Rn, it is also antisymmetry
on Dn. Therefore, majorization is partial ordered, or poset on Dn. And M(b) is called
principal majorization ideal.

Now, we formulate our first OWA optimization problem

max
n

j=1

wjxj s. t. x ∈ M(b). (3.2)

Note by definition, the above problem can also be described as

max
n

j=1

wjx[j] s. t. x ∈ M(b). (3.3)

By symmetry, the above problem is equivalent to

max
n

j=1

wjx[j] s. t. x  b. (3.4)
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µn is the required optimization value. (The above DP is given in [2], we correct some
misprints.)

Note also that if w1 ≤ w2 ≤ · · · ≤ wn, i.e., Schur concave function, only one block, the
optimal solution is: all components are equal to 1/n

n
j=1 bj.

4. Majorization for partially ordered sets

Recently more general partially ordered sets related to maorization has been researched
([1]). We first give the definition and review the main results.

Consider a partially set (poset) (P,≤P ) on a set wirh n elements. A linear extension of
P is a linear order ≤L (on P ) such that if i ≤P j then i ≤L j. An ideal of poset (P,≤P )
is a set I ⊆ P such that a ∈ I and b ≤P a implies b ∈ I. And a real-valued function f
defined on P is P -monotone if

f(i) ≥ f(j) whenever i ≤P j. (4.1)

3

17_Ping Zhan.indd   291 15.2.20   6:54:45 PM



Ordered Weighted Optimization related to Majorization292

4. Majorization for partially ordered sets

Recently more general partially ordered sets related to maorization has been researched ([1]). We 

first give the definition and review the main results.

Consider a partially set (poset) (P, 

We restrict the problem on M(b) because it is convenient when consider the structure of
optimal solution.

The optimization problem is trivial if w is Schur-convex, i.e., wTx ≤ wTy whenever
x  y, b is an optimal solution.

Note also that optimization problem

max
n

j=1

wjxj s. t. x  b (3.5)

can be achieved by greedy algorithm. It is also the result of submodular property ([4]). If
w1 ≥ w2 ≥ · · · ≥ wn, above problems are coincided, the solution is bπ, which is a permu-
tation of b such that b1 ≥ b2 ≥ · · · ≥ bn

G. Dahl ([2]) investigated the extreme points structure of M(b). To avoid some techni-
cals, b is assumed to satisfy b1 > b2 > · · · > bn. Note M(b) is determined by two sets of
inequalities, the majorization inequalities (2.1) and (2.2), ordered inequalities (2.4). The
elements (x1, x2, · · · , xn) of extreme point x is partitioned into some ordered blocks, blocks
are separated when majorization inequalities take equalities. Within each block, ordered
inequalities take equalities, i.e., elements in each block have same value.

The following notation is the weight averaged on a block having indexes from i to j
(1 ≤ i ≤ j ≤ n) of an extreme point in M(b),
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P such that  and a implies  And a real-valued function

For two P -monotone functions f and g defined on P , f is P -majorized by g if


i∈I

f(i) ≤

i∈I

g(j) for each ideal I in (P,≤P ) (4.2)

with equality when I = P . We then write f P g. We should point out that f P g,
provided that there exists permutations π and π of P , such that fπ P gπ , here fπ is the
composition f ◦ π.

Theorem 4.1 ([1]): Assume that f, g : P → R satisfy f P g. Then f  g (classical
majorization) holds. However, the converse does not hold in general.

Example 4.1: The following figure shows an example with poset P = {1, 2, 3, 4}, and
1 ≤P 2, 1 ≤P 3, 2 ≤P 4, 3 ≤P 4. And the values of f f (= fπ) and g are defined as in
Figure 4.1. It is clear that all f , f  and g are monotone. Also f (1) = 10 ≤ g(1) = 10,
f (1) + f (2) = 10 + 8 ≤ g(1) + g(2) = 10 + 9, in the same way, 10 + 10 ≤ 10 + 10,
10 + 8 + 10 ≤ 10 + 9 + 10, 10 + 8 + 10 + 1 = 10 + 9 + 10 + 0. Therefore, f  P g. Since f 

is a permutation of f , we also have f P g. By above theorem, we have f   g and f  g.
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Figure 4.1. The Hasse diagram of P , and corresponding f P g

To have a more comprehensive understanding of P -majorization, a simple example is
given in [1]. If P consists two incomparable elements, and let f = (1, 1), g = (2, 0). Then
f  g, but f P g/ . Therefore, compare classical majorization, P -majorization is much
strong condition. If all elements are incomparable, then P -majorization forces all elements
of both functions taking same value.

Now we show OWA optimization problem related to majorization for partially ordered
sets.

Let Rn
P denote the set of P -monotone vectors in Rn and b = (b1, b2, · · · , bn) ∈ Rn

P , the
set of P -monotone vectors that are P -majorizated by b is [1],
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To have a more comprehensive understanding of P -majorization, a simple example is
given in [1]. If P consists two incomparable elements, and let f = (1, 1), g = (2, 0). Then
f  g, but f P g/ . Therefore, compare classical majorization, P -majorization is much
strong condition. If all elements are incomparable, then P -majorization forces all elements
of both functions taking same value.
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P , the
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To have a more comprehensive understanding of P -majorization, a simple example is
given in [1]. If P consists two incomparable elements, and let f = (1, 1), g = (2, 0). Then
f  g, but f P g/ . Therefore, compare classical majorization, P -majorization is much
strong condition. If all elements are incomparable, then P -majorization forces all elements
of both functions taking same value.

Now we show OWA optimization problem related to majorization for partially ordered
sets.

Let Rn
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P , the
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To have a more comprehensive understanding of P -majorization, a simple example is
given in [1]. If P consists two incomparable elements, and let f = (1, 1), g = (2, 0). Then
f  g, but f P g/ . Therefore, compare classical majorization, P -majorization is much
strong condition. If all elements are incomparable, then P -majorization forces all elements
of both functions taking same value.

Now we show OWA optimization problem related to majorization for partially ordered
sets.

Let Rn
P denote the set of P -monotone vectors in Rn and b = (b1, b2, · · · , bn) ∈ Rn

P , the
set of P -monotone vectors that are P -majorizated by b is [1],
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To have a more comprehensive understanding of P -majorization, a simple example is
given in [1]. If P consists two incomparable elements, and let f = (1, 1), g = (2, 0). Then
f  g, but f P g/ . Therefore, compare classical majorization, P -majorization is much
strong condition. If all elements are incomparable, then P -majorization forces all elements
of both functions taking same value.

Now we show OWA optimization problem related to majorization for partially ordered
sets.

Let Rn
P denote the set of P -monotone vectors in Rn and b = (b1, b2, · · · , bn) ∈ Rn

P , the
set of P -monotone vectors that are P -majorizated by b is [1],
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with equality when

We restrict the problem on M(b) because it is convenient when consider the structure of
optimal solution.

The optimization problem is trivial if w is Schur-convex, i.e., wTx ≤ wTy whenever
x  y, b is an optimal solution.

Note also that optimization problem

max
n

j=1

wjxj s. t. x  b (3.5)

can be achieved by greedy algorithm. It is also the result of submodular property ([4]). If
w1 ≥ w2 ≥ · · · ≥ wn, above problems are coincided, the solution is bπ, which is a permu-
tation of b such that b1 ≥ b2 ≥ · · · ≥ bn

G. Dahl ([2]) investigated the extreme points structure of M(b). To avoid some techni-
cals, b is assumed to satisfy b1 > b2 > · · · > bn. Note M(b) is determined by two sets of
inequalities, the majorization inequalities (2.1) and (2.2), ordered inequalities (2.4). The
elements (x1, x2, · · · , xn) of extreme point x is partitioned into some ordered blocks, blocks
are separated when majorization inequalities take equalities. Within each block, ordered
inequalities take equalities, i.e., elements in each block have same value.

The following notation is the weight averaged on a block having indexes from i to j
(1 ≤ i ≤ j ≤ n) of an extreme point in M(b),

ŵi,j = (1/(j − i + 1))

j
k=i

wk

j
r=i

br. (3.6)

A dynamic programming is also given (here w are arbitrary weights, i.e., we do not need
that wi ≥ wj whenever i < j):

Dynamic Algorithm for M(b)
1. Let µ0 = 0.
2. For k = 1, 2, · · · , n calculate µk = max{µt−1 + ŵt,k : t = 1, 2, · · · , k}.

µn is the required optimization value. (The above DP is given in [2], we correct some
misprints.)

Note also that if w1 ≤ w2 ≤ · · · ≤ wn, i.e., Schur concave function, only one block, the
optimal solution is: all components are equal to 1/n

n
j=1 bj.

4. Majorization for partially ordered sets

Recently more general partially ordered sets related to maorization has been researched
([1]). We first give the definition and review the main results.

Consider a partially set (poset) (P,≤P ) on a set wirh n elements. A linear extension of
P is a linear order ≤L (on P ) such that if i ≤P j then i ≤L j. An ideal of poset (P,≤P )
is a set I ⊆ P such that a ∈ I and b ≤P a implies b ∈ I. And a real-valued function f
defined on P is P -monotone if

f(i) ≥ f(j) whenever i ≤P j. (4.1)
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Example 4.1: The following figure shows an example with poset P = {1, 2, 3, 4}, and
1 ≤P 2, 1 ≤P 3, 2 ≤P 4, 3 ≤P 4. And the values of f f (= fπ) and g are defined as in
Figure 4.1. It is clear that all f , f  and g are monotone. Also f (1) = 10 ≤ g(1) = 10,
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To have a more comprehensive understanding of P -majorization, a simple example is
given in [1]. If P consists two incomparable elements, and let f = (1, 1), g = (2, 0). Then
f  g, but f P g/ . Therefore, compare classical majorization, P -majorization is much
strong condition. If all elements are incomparable, then P -majorization forces all elements
of both functions taking same value.

Now we show OWA optimization problem related to majorization for partially ordered
sets.

Let Rn
P denote the set of P -monotone vectors in Rn and b = (b1, b2, · · · , bn) ∈ Rn

P , the
set of P -monotone vectors that are P -majorizated by b is [1],
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To have a more comprehensive understanding of P -majorization, a simple example is
given in [1]. If P consists two incomparable elements, and let f = (1, 1), g = (2, 0). Then
f  g, but f P g/ . Therefore, compare classical majorization, P -majorization is much
strong condition. If all elements are incomparable, then P -majorization forces all elements
of both functions taking same value.

Now we show OWA optimization problem related to majorization for partially ordered
sets.

Let Rn
P denote the set of P -monotone vectors in Rn and b = (b1, b2, · · · , bn) ∈ Rn

P , the
set of P -monotone vectors that are P -majorizated by b is [1],

PM(b) = {x ∈ Rn
P : x P b}. (4.3)

Now, let us consider following optimization problems.

max
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wjxj s. t. x ∈ PM(b). (4.4)

Although, the vertex set (4.3) has been characterized in [1], within each block, the value
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Figure 4.1. The Hasse diagram of P , and corresponding f P g

To have a more comprehensive understanding of P -majorization, a simple example is
given in [1]. If P consists two incomparable elements, and let f = (1, 1), g = (2, 0). Then
f  g, but f P g/ . Therefore, compare classical majorization, P -majorization is much
strong condition. If all elements are incomparable, then P -majorization forces all elements
of both functions taking same value.

Now we show OWA optimization problem related to majorization for partially ordered
sets.

Let Rn
P denote the set of P -monotone vectors in Rn and b = (b1, b2, · · · , bn) ∈ Rn

P , the
set of P -monotone vectors that are P -majorizated by b is [1],

PM(b) = {x ∈ Rn
P : x P b}. (4.3)

Now, let us consider following optimization problems.

max
n

j=1

wjxj s. t. x ∈ PM(b). (4.4)

Although, the vertex set (4.3) has been characterized in [1], within each block, the value
is not simple average, also no weighted average as in the case of principal majorization

4

, here

For two P -monotone functions f and g defined on P , f is P -majorized by g if


i∈I

f(i) ≤

i∈I

g(j) for each ideal I in (P,≤P ) (4.2)

with equality when I = P . We then write f P g. We should point out that f P g,
provided that there exists permutations π and π of P , such that fπ P gπ , here fπ is the
composition f ◦ π.

Theorem 4.1 ([1]): Assume that f, g : P → R satisfy f P g. Then f  g (classical
majorization) holds. However, the converse does not hold in general.

Example 4.1: The following figure shows an example with poset P = {1, 2, 3, 4}, and
1 ≤P 2, 1 ≤P 3, 2 ≤P 4, 3 ≤P 4. And the values of f f (= fπ) and g are defined as in
Figure 4.1. It is clear that all f , f  and g are monotone. Also f (1) = 10 ≤ g(1) = 10,
f (1) + f (2) = 10 + 8 ≤ g(1) + g(2) = 10 + 9, in the same way, 10 + 10 ≤ 10 + 10,
10 + 8 + 10 ≤ 10 + 9 + 10, 10 + 8 + 10 + 1 = 10 + 9 + 10 + 0. Therefore, f  P g. Since f 

is a permutation of f , we also have f P g. By above theorem, we have f   g and f  g.
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To have a more comprehensive understanding of P -majorization, a simple example is
given in [1]. If P consists two incomparable elements, and let f = (1, 1), g = (2, 0). Then
f  g, but f P g/ . Therefore, compare classical majorization, P -majorization is much
strong condition. If all elements are incomparable, then P -majorization forces all elements
of both functions taking same value.

Now we show OWA optimization problem related to majorization for partially ordered
sets.

Let Rn
P denote the set of P -monotone vectors in Rn and b = (b1, b2, · · · , bn) ∈ Rn

P , the
set of P -monotone vectors that are P -majorizated by b is [1],

PM(b) = {x ∈ Rn
P : x P b}. (4.3)

Now, let us consider following optimization problems.

max
n

j=1

wjxj s. t. x ∈ PM(b). (4.4)

Although, the vertex set (4.3) has been characterized in [1], within each block, the value
is not simple average, also no weighted average as in the case of principal majorization
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For two P -monotone functions f and g defined on P , f is P -majorized by g if
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i∈I

f(i) ≤
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g(j) for each ideal I in (P,≤P ) (4.2)

with equality when I = P . We then write f P g. We should point out that f P g,
provided that there exists permutations π and π of P , such that fπ P gπ , here fπ is the
composition f ◦ π.

Theorem 4.1 ([1]): Assume that f, g : P → R satisfy f P g. Then f  g (classical
majorization) holds. However, the converse does not hold in general.

Example 4.1: The following figure shows an example with poset P = {1, 2, 3, 4}, and
1 ≤P 2, 1 ≤P 3, 2 ≤P 4, 3 ≤P 4. And the values of f f (= fπ) and g are defined as in
Figure 4.1. It is clear that all f , f  and g are monotone. Also f (1) = 10 ≤ g(1) = 10,
f (1) + f (2) = 10 + 8 ≤ g(1) + g(2) = 10 + 9, in the same way, 10 + 10 ≤ 10 + 10,
10 + 8 + 10 ≤ 10 + 9 + 10, 10 + 8 + 10 + 1 = 10 + 9 + 10 + 0. Therefore, f  P g. Since f 

is a permutation of f , we also have f P g. By above theorem, we have f   g and f  g.
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To have a more comprehensive understanding of P -majorization, a simple example is
given in [1]. If P consists two incomparable elements, and let f = (1, 1), g = (2, 0). Then
f  g, but f P g/ . Therefore, compare classical majorization, P -majorization is much
strong condition. If all elements are incomparable, then P -majorization forces all elements
of both functions taking same value.

Now we show OWA optimization problem related to majorization for partially ordered
sets.

Let Rn
P denote the set of P -monotone vectors in Rn and b = (b1, b2, · · · , bn) ∈ Rn

P , the
set of P -monotone vectors that are P -majorizated by b is [1],

PM(b) = {x ∈ Rn
P : x P b}. (4.3)

Now, let us consider following optimization problems.

max
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j=1

wjxj s. t. x ∈ PM(b). (4.4)

Although, the vertex set (4.3) has been characterized in [1], within each block, the value
is not simple average, also no weighted average as in the case of principal majorization
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provided that there exists permutations π and π of P , such that fπ P gπ , here fπ is the
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Theorem 4.1 ([1]): Assume that f, g : P → R satisfy f P g. Then f  g (classical
majorization) holds. However, the converse does not hold in general.

Example 4.1: The following figure shows an example with poset P = {1, 2, 3, 4}, and
1 ≤P 2, 1 ≤P 3, 2 ≤P 4, 3 ≤P 4. And the values of f f (= fπ) and g are defined as in
Figure 4.1. It is clear that all f , f  and g are monotone. Also f (1) = 10 ≤ g(1) = 10,
f (1) + f (2) = 10 + 8 ≤ g(1) + g(2) = 10 + 9, in the same way, 10 + 10 ≤ 10 + 10,
10 + 8 + 10 ≤ 10 + 9 + 10, 10 + 8 + 10 + 1 = 10 + 9 + 10 + 0. Therefore, f  P g. Since f 

is a permutation of f , we also have f P g. By above theorem, we have f   g and f  g.
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To have a more comprehensive understanding of P -majorization, a simple example is
given in [1]. If P consists two incomparable elements, and let f = (1, 1), g = (2, 0). Then
f  g, but f P g/ . Therefore, compare classical majorization, P -majorization is much
strong condition. If all elements are incomparable, then P -majorization forces all elements
of both functions taking same value.

Now we show OWA optimization problem related to majorization for partially ordered
sets.

Let Rn
P denote the set of P -monotone vectors in Rn and b = (b1, b2, · · · , bn) ∈ Rn

P , the
set of P -monotone vectors that are P -majorizated by b is [1],

PM(b) = {x ∈ Rn
P : x P b}. (4.3)

Now, let us consider following optimization problems.

max
n

j=1

wjxj s. t. x ∈ PM(b). (4.4)

Although, the vertex set (4.3) has been characterized in [1], within each block, the value
is not simple average, also no weighted average as in the case of principal majorization
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For two P -monotone functions f and g defined on P , f is P -majorized by g if


i∈I

f(i) ≤

i∈I

g(j) for each ideal I in (P,≤P ) (4.2)

with equality when I = P . We then write f P g. We should point out that f P g,
provided that there exists permutations π and π of P , such that fπ P gπ , here fπ is the
composition f ◦ π.

Theorem 4.1 ([1]): Assume that f, g : P → R satisfy f P g. Then f  g (classical
majorization) holds. However, the converse does not hold in general.

Example 4.1: The following figure shows an example with poset P = {1, 2, 3, 4}, and
1 ≤P 2, 1 ≤P 3, 2 ≤P 4, 3 ≤P 4. And the values of f f (= fπ) and g are defined as in
Figure 4.1. It is clear that all f , f  and g are monotone. Also f (1) = 10 ≤ g(1) = 10,
f (1) + f (2) = 10 + 8 ≤ g(1) + g(2) = 10 + 9, in the same way, 10 + 10 ≤ 10 + 10,
10 + 8 + 10 ≤ 10 + 9 + 10, 10 + 8 + 10 + 1 = 10 + 9 + 10 + 0. Therefore, f  P g. Since f 

is a permutation of f , we also have f P g. By above theorem, we have f   g and f  g.
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To have a more comprehensive understanding of P -majorization, a simple example is
given in [1]. If P consists two incomparable elements, and let f = (1, 1), g = (2, 0). Then
f  g, but f P g/ . Therefore, compare classical majorization, P -majorization is much
strong condition. If all elements are incomparable, then P -majorization forces all elements
of both functions taking same value.

Now we show OWA optimization problem related to majorization for partially ordered
sets.

Let Rn
P denote the set of P -monotone vectors in Rn and b = (b1, b2, · · · , bn) ∈ Rn

P , the
set of P -monotone vectors that are P -majorizated by b is [1],

PM(b) = {x ∈ Rn
P : x P b}. (4.3)

Now, let us consider following optimization problems.
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n

j=1

wjxj s. t. x ∈ PM(b). (4.4)

Although, the vertex set (4.3) has been characterized in [1], within each block, the value
is not simple average, also no weighted average as in the case of principal majorization
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with equality when I = P . We then write f P g. We should point out that f P g,
provided that there exists permutations π and π of P , such that fπ P gπ , here fπ is the
composition f ◦ π.

Theorem 4.1 ([1]): Assume that f, g : P → R satisfy f P g. Then f  g (classical
majorization) holds. However, the converse does not hold in general.

Example 4.1: The following figure shows an example with poset P = {1, 2, 3, 4}, and
1 ≤P 2, 1 ≤P 3, 2 ≤P 4, 3 ≤P 4. And the values of f f (= fπ) and g are defined as in
Figure 4.1. It is clear that all f , f  and g are monotone. Also f (1) = 10 ≤ g(1) = 10,
f (1) + f (2) = 10 + 8 ≤ g(1) + g(2) = 10 + 9, in the same way, 10 + 10 ≤ 10 + 10,
10 + 8 + 10 ≤ 10 + 9 + 10, 10 + 8 + 10 + 1 = 10 + 9 + 10 + 0. Therefore, f  P g. Since f 

is a permutation of f , we also have f P g. By above theorem, we have f   g and f  g.
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To have a more comprehensive understanding of P -majorization, a simple example is
given in [1]. If P consists two incomparable elements, and let f = (1, 1), g = (2, 0). Then
f  g, but f P g/ . Therefore, compare classical majorization, P -majorization is much
strong condition. If all elements are incomparable, then P -majorization forces all elements
of both functions taking same value.

Now we show OWA optimization problem related to majorization for partially ordered
sets.

Let Rn
P denote the set of P -monotone vectors in Rn and b = (b1, b2, · · · , bn) ∈ Rn

P , the
set of P -monotone vectors that are P -majorizated by b is [1],

PM(b) = {x ∈ Rn
P : x P b}. (4.3)

Now, let us consider following optimization problems.

max
n

j=1

wjxj s. t. x ∈ PM(b). (4.4)

Although, the vertex set (4.3) has been characterized in [1], within each block, the value
is not simple average, also no weighted average as in the case of principal majorization
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For two P -monotone functions f and g defined on P , f is P -majorized by g if
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
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g(j) for each ideal I in (P,≤P ) (4.2)

with equality when I = P . We then write f P g. We should point out that f P g,
provided that there exists permutations π and π of P , such that fπ P gπ , here fπ is the
composition f ◦ π.

Theorem 4.1 ([1]): Assume that f, g : P → R satisfy f P g. Then f  g (classical
majorization) holds. However, the converse does not hold in general.

Example 4.1: The following figure shows an example with poset P = {1, 2, 3, 4}, and
1 ≤P 2, 1 ≤P 3, 2 ≤P 4, 3 ≤P 4. And the values of f f (= fπ) and g are defined as in
Figure 4.1. It is clear that all f , f  and g are monotone. Also f (1) = 10 ≤ g(1) = 10,
f (1) + f (2) = 10 + 8 ≤ g(1) + g(2) = 10 + 9, in the same way, 10 + 10 ≤ 10 + 10,
10 + 8 + 10 ≤ 10 + 9 + 10, 10 + 8 + 10 + 1 = 10 + 9 + 10 + 0. Therefore, f  P g. Since f 

is a permutation of f , we also have f P g. By above theorem, we have f   g and f  g.
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To have a more comprehensive understanding of P -majorization, a simple example is
given in [1]. If P consists two incomparable elements, and let f = (1, 1), g = (2, 0). Then
f  g, but f P g/ . Therefore, compare classical majorization, P -majorization is much
strong condition. If all elements are incomparable, then P -majorization forces all elements
of both functions taking same value.

Now we show OWA optimization problem related to majorization for partially ordered
sets.

Let Rn
P denote the set of P -monotone vectors in Rn and b = (b1, b2, · · · , bn) ∈ Rn

P , the
set of P -monotone vectors that are P -majorizated by b is [1],

PM(b) = {x ∈ Rn
P : x P b}. (4.3)

Now, let us consider following optimization problems.

max
n

j=1

wjxj s. t. x ∈ PM(b). (4.4)

Although, the vertex set (4.3) has been characterized in [1], within each block, the value
is not simple average, also no weighted average as in the case of principal majorization
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For two P -monotone functions f and g defined on P , f is P -majorized by g if
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f(i) ≤

i∈I

g(j) for each ideal I in (P,≤P ) (4.2)

with equality when I = P . We then write f P g. We should point out that f P g,
provided that there exists permutations π and π of P , such that fπ P gπ , here fπ is the
composition f ◦ π.

Theorem 4.1 ([1]): Assume that f, g : P → R satisfy f P g. Then f  g (classical
majorization) holds. However, the converse does not hold in general.

Example 4.1: The following figure shows an example with poset P = {1, 2, 3, 4}, and
1 ≤P 2, 1 ≤P 3, 2 ≤P 4, 3 ≤P 4. And the values of f f (= fπ) and g are defined as in
Figure 4.1. It is clear that all f , f  and g are monotone. Also f (1) = 10 ≤ g(1) = 10,
f (1) + f (2) = 10 + 8 ≤ g(1) + g(2) = 10 + 9, in the same way, 10 + 10 ≤ 10 + 10,
10 + 8 + 10 ≤ 10 + 9 + 10, 10 + 8 + 10 + 1 = 10 + 9 + 10 + 0. Therefore, f  P g. Since f 

is a permutation of f , we also have f P g. By above theorem, we have f   g and f  g.
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To have a more comprehensive understanding of P -majorization, a simple example is
given in [1]. If P consists two incomparable elements, and let f = (1, 1), g = (2, 0). Then
f  g, but f P g/ . Therefore, compare classical majorization, P -majorization is much
strong condition. If all elements are incomparable, then P -majorization forces all elements
of both functions taking same value.

Now we show OWA optimization problem related to majorization for partially ordered
sets.

Let Rn
P denote the set of P -monotone vectors in Rn and b = (b1, b2, · · · , bn) ∈ Rn

P , the
set of P -monotone vectors that are P -majorizated by b is [1],

PM(b) = {x ∈ Rn
P : x P b}. (4.3)

Now, let us consider following optimization problems.

max
n

j=1

wjxj s. t. x ∈ PM(b). (4.4)

Although, the vertex set (4.3) has been characterized in [1], within each block, the value
is not simple average, also no weighted average as in the case of principal majorization

4

 (classical majorization) 
holds. However, the converse does not hold in general.

Example 4.1: The following figure shows an examaple with poset P={1, 2, 3, 4}, and 1
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
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f(i) ≤

i∈I

g(j) for each ideal I in (P,≤P ) (4.2)

with equality when I = P . We then write f P g. We should point out that f P g,
provided that there exists permutations π and π of P , such that fπ P gπ , here fπ is the
composition f ◦ π.

Theorem 4.1 ([1]): Assume that f, g : P → R satisfy f P g. Then f  g (classical
majorization) holds. However, the converse does not hold in general.

Example 4.1: The following figure shows an example with poset P = {1, 2, 3, 4}, and
1 ≤P 2, 1 ≤P 3, 2 ≤P 4, 3 ≤P 4. And the values of f f (= fπ) and g are defined as in
Figure 4.1. It is clear that all f , f  and g are monotone. Also f (1) = 10 ≤ g(1) = 10,
f (1) + f (2) = 10 + 8 ≤ g(1) + g(2) = 10 + 9, in the same way, 10 + 10 ≤ 10 + 10,
10 + 8 + 10 ≤ 10 + 9 + 10, 10 + 8 + 10 + 1 = 10 + 9 + 10 + 0. Therefore, f  P g. Since f 

is a permutation of f , we also have f P g. By above theorem, we have f   g and f  g.
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Figure 4.1. The Hasse diagram of P , and corresponding f P g

To have a more comprehensive understanding of P -majorization, a simple example is
given in [1]. If P consists two incomparable elements, and let f = (1, 1), g = (2, 0). Then
f  g, but f P g/ . Therefore, compare classical majorization, P -majorization is much
strong condition. If all elements are incomparable, then P -majorization forces all elements
of both functions taking same value.

Now we show OWA optimization problem related to majorization for partially ordered
sets.

Let Rn
P denote the set of P -monotone vectors in Rn and b = (b1, b2, · · · , bn) ∈ Rn

P , the
set of P -monotone vectors that are P -majorizated by b is [1],

PM(b) = {x ∈ Rn
P : x P b}. (4.3)

Now, let us consider following optimization problems.

max
n

j=1

wjxj s. t. x ∈ PM(b). (4.4)

Although, the vertex set (4.3) has been characterized in [1], within each block, the value
is not simple average, also no weighted average as in the case of principal majorization
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For two P -monotone functions f and g defined on P , f is P -majorized by g if


i∈I

f(i) ≤

i∈I

g(j) for each ideal I in (P,≤P ) (4.2)

with equality when I = P . We then write f P g. We should point out that f P g,
provided that there exists permutations π and π of P , such that fπ P gπ , here fπ is the
composition f ◦ π.

Theorem 4.1 ([1]): Assume that f, g : P → R satisfy f P g. Then f  g (classical
majorization) holds. However, the converse does not hold in general.

Example 4.1: The following figure shows an example with poset P = {1, 2, 3, 4}, and
1 ≤P 2, 1 ≤P 3, 2 ≤P 4, 3 ≤P 4. And the values of f f (= fπ) and g are defined as in
Figure 4.1. It is clear that all f , f  and g are monotone. Also f (1) = 10 ≤ g(1) = 10,
f (1) + f (2) = 10 + 8 ≤ g(1) + g(2) = 10 + 9, in the same way, 10 + 10 ≤ 10 + 10,
10 + 8 + 10 ≤ 10 + 9 + 10, 10 + 8 + 10 + 1 = 10 + 9 + 10 + 0. Therefore, f  P g. Since f 

is a permutation of f , we also have f P g. By above theorem, we have f   g and f  g.
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To have a more comprehensive understanding of P -majorization, a simple example is
given in [1]. If P consists two incomparable elements, and let f = (1, 1), g = (2, 0). Then
f  g, but f P g/ . Therefore, compare classical majorization, P -majorization is much
strong condition. If all elements are incomparable, then P -majorization forces all elements
of both functions taking same value.

Now we show OWA optimization problem related to majorization for partially ordered
sets.

Let Rn
P denote the set of P -monotone vectors in Rn and b = (b1, b2, · · · , bn) ∈ Rn

P , the
set of P -monotone vectors that are P -majorizated by b is [1],

PM(b) = {x ∈ Rn
P : x P b}. (4.3)

Now, let us consider following optimization problems.

max
n

j=1

wjxj s. t. x ∈ PM(b). (4.4)

Although, the vertex set (4.3) has been characterized in [1], within each block, the value
is not simple average, also no weighted average as in the case of principal majorization
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For two P -monotone functions f and g defined on P , f is P -majorized by g if


i∈I

f(i) ≤

i∈I

g(j) for each ideal I in (P,≤P ) (4.2)

with equality when I = P . We then write f P g. We should point out that f P g,
provided that there exists permutations π and π of P , such that fπ P gπ , here fπ is the
composition f ◦ π.

Theorem 4.1 ([1]): Assume that f, g : P → R satisfy f P g. Then f  g (classical
majorization) holds. However, the converse does not hold in general.

Example 4.1: The following figure shows an example with poset P = {1, 2, 3, 4}, and
1 ≤P 2, 1 ≤P 3, 2 ≤P 4, 3 ≤P 4. And the values of f f (= fπ) and g are defined as in
Figure 4.1. It is clear that all f , f  and g are monotone. Also f (1) = 10 ≤ g(1) = 10,
f (1) + f (2) = 10 + 8 ≤ g(1) + g(2) = 10 + 9, in the same way, 10 + 10 ≤ 10 + 10,
10 + 8 + 10 ≤ 10 + 9 + 10, 10 + 8 + 10 + 1 = 10 + 9 + 10 + 0. Therefore, f  P g. Since f 

is a permutation of f , we also have f P g. By above theorem, we have f   g and f  g.
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To have a more comprehensive understanding of P -majorization, a simple example is
given in [1]. If P consists two incomparable elements, and let f = (1, 1), g = (2, 0). Then
f  g, but f P g/ . Therefore, compare classical majorization, P -majorization is much
strong condition. If all elements are incomparable, then P -majorization forces all elements
of both functions taking same value.

Now we show OWA optimization problem related to majorization for partially ordered
sets.

Let Rn
P denote the set of P -monotone vectors in Rn and b = (b1, b2, · · · , bn) ∈ Rn

P , the
set of P -monotone vectors that are P -majorizated by b is [1],

PM(b) = {x ∈ Rn
P : x P b}. (4.3)

Now, let us consider following optimization problems.

max
n

j=1

wjxj s. t. x ∈ PM(b). (4.4)

Although, the vertex set (4.3) has been characterized in [1], within each block, the value
is not simple average, also no weighted average as in the case of principal majorization

4

4, 3

For two P -monotone functions f and g defined on P , f is P -majorized by g if


i∈I

f(i) ≤

i∈I

g(j) for each ideal I in (P,≤P ) (4.2)

with equality when I = P . We then write f P g. We should point out that f P g,
provided that there exists permutations π and π of P , such that fπ P gπ , here fπ is the
composition f ◦ π.

Theorem 4.1 ([1]): Assume that f, g : P → R satisfy f P g. Then f  g (classical
majorization) holds. However, the converse does not hold in general.

Example 4.1: The following figure shows an example with poset P = {1, 2, 3, 4}, and
1 ≤P 2, 1 ≤P 3, 2 ≤P 4, 3 ≤P 4. And the values of f f (= fπ) and g are defined as in
Figure 4.1. It is clear that all f , f  and g are monotone. Also f (1) = 10 ≤ g(1) = 10,
f (1) + f (2) = 10 + 8 ≤ g(1) + g(2) = 10 + 9, in the same way, 10 + 10 ≤ 10 + 10,
10 + 8 + 10 ≤ 10 + 9 + 10, 10 + 8 + 10 + 1 = 10 + 9 + 10 + 0. Therefore, f  P g. Since f 

is a permutation of f , we also have f P g. By above theorem, we have f   g and f  g.
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To have a more comprehensive understanding of P -majorization, a simple example is
given in [1]. If P consists two incomparable elements, and let f = (1, 1), g = (2, 0). Then
f  g, but f P g/ . Therefore, compare classical majorization, P -majorization is much
strong condition. If all elements are incomparable, then P -majorization forces all elements
of both functions taking same value.

Now we show OWA optimization problem related to majorization for partially ordered
sets.

Let Rn
P denote the set of P -monotone vectors in Rn and b = (b1, b2, · · · , bn) ∈ Rn

P , the
set of P -monotone vectors that are P -majorizated by b is [1],

PM(b) = {x ∈ Rn
P : x P b}. (4.3)

Now, let us consider following optimization problems.

max
n

j=1

wjxj s. t. x ∈ PM(b). (4.4)

Although, the vertex set (4.3) has been characterized in [1], within each block, the value
is not simple average, also no weighted average as in the case of principal majorization
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For two P -monotone functions f and g defined on P , f is P -majorized by g if


i∈I

f(i) ≤

i∈I

g(j) for each ideal I in (P,≤P ) (4.2)

with equality when I = P . We then write f P g. We should point out that f P g,
provided that there exists permutations π and π of P , such that fπ P gπ , here fπ is the
composition f ◦ π.

Theorem 4.1 ([1]): Assume that f, g : P → R satisfy f P g. Then f  g (classical
majorization) holds. However, the converse does not hold in general.

Example 4.1: The following figure shows an example with poset P = {1, 2, 3, 4}, and
1 ≤P 2, 1 ≤P 3, 2 ≤P 4, 3 ≤P 4. And the values of f f (= fπ) and g are defined as in
Figure 4.1. It is clear that all f , f  and g are monotone. Also f (1) = 10 ≤ g(1) = 10,
f (1) + f (2) = 10 + 8 ≤ g(1) + g(2) = 10 + 9, in the same way, 10 + 10 ≤ 10 + 10,
10 + 8 + 10 ≤ 10 + 9 + 10, 10 + 8 + 10 + 1 = 10 + 9 + 10 + 0. Therefore, f  P g. Since f 

is a permutation of f , we also have f P g. By above theorem, we have f   g and f  g.
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To have a more comprehensive understanding of P -majorization, a simple example is
given in [1]. If P consists two incomparable elements, and let f = (1, 1), g = (2, 0). Then
f  g, but f P g/ . Therefore, compare classical majorization, P -majorization is much
strong condition. If all elements are incomparable, then P -majorization forces all elements
of both functions taking same value.

Now we show OWA optimization problem related to majorization for partially ordered
sets.

Let Rn
P denote the set of P -monotone vectors in Rn and b = (b1, b2, · · · , bn) ∈ Rn

P , the
set of P -monotone vectors that are P -majorizated by b is [1],

PM(b) = {x ∈ Rn
P : x P b}. (4.3)

Now, let us consider following optimization problems.

max
n

j=1

wjxj s. t. x ∈ PM(b). (4.4)

Although, the vertex set (4.3) has been characterized in [1], within each block, the value
is not simple average, also no weighted average as in the case of principal majorization
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For two P -monotone functions f and g defined on P , f is P -majorized by g if


i∈I

f(i) ≤

i∈I

g(j) for each ideal I in (P,≤P ) (4.2)

with equality when I = P . We then write f P g. We should point out that f P g,
provided that there exists permutations π and π of P , such that fπ P gπ , here fπ is the
composition f ◦ π.

Theorem 4.1 ([1]): Assume that f, g : P → R satisfy f P g. Then f  g (classical
majorization) holds. However, the converse does not hold in general.

Example 4.1: The following figure shows an example with poset P = {1, 2, 3, 4}, and
1 ≤P 2, 1 ≤P 3, 2 ≤P 4, 3 ≤P 4. And the values of f f (= fπ) and g are defined as in
Figure 4.1. It is clear that all f , f  and g are monotone. Also f (1) = 10 ≤ g(1) = 10,
f (1) + f (2) = 10 + 8 ≤ g(1) + g(2) = 10 + 9, in the same way, 10 + 10 ≤ 10 + 10,
10 + 8 + 10 ≤ 10 + 9 + 10, 10 + 8 + 10 + 1 = 10 + 9 + 10 + 0. Therefore, f  P g. Since f 

is a permutation of f , we also have f P g. By above theorem, we have f   g and f  g.
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To have a more comprehensive understanding of P -majorization, a simple example is
given in [1]. If P consists two incomparable elements, and let f = (1, 1), g = (2, 0). Then
f  g, but f P g/ . Therefore, compare classical majorization, P -majorization is much
strong condition. If all elements are incomparable, then P -majorization forces all elements
of both functions taking same value.

Now we show OWA optimization problem related to majorization for partially ordered
sets.

Let Rn
P denote the set of P -monotone vectors in Rn and b = (b1, b2, · · · , bn) ∈ Rn

P , the
set of P -monotone vectors that are P -majorizated by b is [1],

PM(b) = {x ∈ Rn
P : x P b}. (4.3)

Now, let us consider following optimization problems.

max
n

j=1

wjxj s. t. x ∈ PM(b). (4.4)

Although, the vertex set (4.3) has been characterized in [1], within each block, the value
is not simple average, also no weighted average as in the case of principal majorization
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and

For two P -monotone functions f and g defined on P , f is P -majorized by g if


i∈I

f(i) ≤

i∈I

g(j) for each ideal I in (P,≤P ) (4.2)

with equality when I = P . We then write f P g. We should point out that f P g,
provided that there exists permutations π and π of P , such that fπ P gπ , here fπ is the
composition f ◦ π.

Theorem 4.1 ([1]): Assume that f, g : P → R satisfy f P g. Then f  g (classical
majorization) holds. However, the converse does not hold in general.

Example 4.1: The following figure shows an example with poset P = {1, 2, 3, 4}, and
1 ≤P 2, 1 ≤P 3, 2 ≤P 4, 3 ≤P 4. And the values of f f (= fπ) and g are defined as in
Figure 4.1. It is clear that all f , f  and g are monotone. Also f (1) = 10 ≤ g(1) = 10,
f (1) + f (2) = 10 + 8 ≤ g(1) + g(2) = 10 + 9, in the same way, 10 + 10 ≤ 10 + 10,
10 + 8 + 10 ≤ 10 + 9 + 10, 10 + 8 + 10 + 1 = 10 + 9 + 10 + 0. Therefore, f  P g. Since f 

is a permutation of f , we also have f P g. By above theorem, we have f   g and f  g.
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To have a more comprehensive understanding of P -majorization, a simple example is
given in [1]. If P consists two incomparable elements, and let f = (1, 1), g = (2, 0). Then
f  g, but f P g/ . Therefore, compare classical majorization, P -majorization is much
strong condition. If all elements are incomparable, then P -majorization forces all elements
of both functions taking same value.

Now we show OWA optimization problem related to majorization for partially ordered
sets.

Let Rn
P denote the set of P -monotone vectors in Rn and b = (b1, b2, · · · , bn) ∈ Rn

P , the
set of P -monotone vectors that are P -majorizated by b is [1],

PM(b) = {x ∈ Rn
P : x P b}. (4.3)

Now, let us consider following optimization problems.

max
n

j=1

wjxj s. t. x ∈ PM(b). (4.4)

Although, the vertex set (4.3) has been characterized in [1], within each block, the value
is not simple average, also no weighted average as in the case of principal majorization
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 are defined as in Figure 4.1. It is clear that all

For two P -monotone functions f and g defined on P , f is P -majorized by g if


i∈I

f(i) ≤

i∈I

g(j) for each ideal I in (P,≤P ) (4.2)

with equality when I = P . We then write f P g. We should point out that f P g,
provided that there exists permutations π and π of P , such that fπ P gπ , here fπ is the
composition f ◦ π.

Theorem 4.1 ([1]): Assume that f, g : P → R satisfy f P g. Then f  g (classical
majorization) holds. However, the converse does not hold in general.

Example 4.1: The following figure shows an example with poset P = {1, 2, 3, 4}, and
1 ≤P 2, 1 ≤P 3, 2 ≤P 4, 3 ≤P 4. And the values of f f (= fπ) and g are defined as in
Figure 4.1. It is clear that all f , f  and g are monotone. Also f (1) = 10 ≤ g(1) = 10,
f (1) + f (2) = 10 + 8 ≤ g(1) + g(2) = 10 + 9, in the same way, 10 + 10 ≤ 10 + 10,
10 + 8 + 10 ≤ 10 + 9 + 10, 10 + 8 + 10 + 1 = 10 + 9 + 10 + 0. Therefore, f  P g. Since f 

is a permutation of f , we also have f P g. By above theorem, we have f   g and f  g.
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Figure 4.1. The Hasse diagram of P , and corresponding f P g

To have a more comprehensive understanding of P -majorization, a simple example is
given in [1]. If P consists two incomparable elements, and let f = (1, 1), g = (2, 0). Then
f  g, but f P g/ . Therefore, compare classical majorization, P -majorization is much
strong condition. If all elements are incomparable, then P -majorization forces all elements
of both functions taking same value.

Now we show OWA optimization problem related to majorization for partially ordered
sets.

Let Rn
P denote the set of P -monotone vectors in Rn and b = (b1, b2, · · · , bn) ∈ Rn

P , the
set of P -monotone vectors that are P -majorizated by b is [1],

PM(b) = {x ∈ Rn
P : x P b}. (4.3)

Now, let us consider following optimization problems.

max
n

j=1

wjxj s. t. x ∈ PM(b). (4.4)

Although, the vertex set (4.3) has been characterized in [1], within each block, the value
is not simple average, also no weighted average as in the case of principal majorization
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and

For two P -monotone functions f and g defined on P , f is P -majorized by g if


i∈I

f(i) ≤

i∈I

g(j) for each ideal I in (P,≤P ) (4.2)

with equality when I = P . We then write f P g. We should point out that f P g,
provided that there exists permutations π and π of P , such that fπ P gπ , here fπ is the
composition f ◦ π.

Theorem 4.1 ([1]): Assume that f, g : P → R satisfy f P g. Then f  g (classical
majorization) holds. However, the converse does not hold in general.

Example 4.1: The following figure shows an example with poset P = {1, 2, 3, 4}, and
1 ≤P 2, 1 ≤P 3, 2 ≤P 4, 3 ≤P 4. And the values of f f (= fπ) and g are defined as in
Figure 4.1. It is clear that all f , f  and g are monotone. Also f (1) = 10 ≤ g(1) = 10,
f (1) + f (2) = 10 + 8 ≤ g(1) + g(2) = 10 + 9, in the same way, 10 + 10 ≤ 10 + 10,
10 + 8 + 10 ≤ 10 + 9 + 10, 10 + 8 + 10 + 1 = 10 + 9 + 10 + 0. Therefore, f  P g. Since f 

is a permutation of f , we also have f P g. By above theorem, we have f   g and f  g.
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To have a more comprehensive understanding of P -majorization, a simple example is
given in [1]. If P consists two incomparable elements, and let f = (1, 1), g = (2, 0). Then
f  g, but f P g/ . Therefore, compare classical majorization, P -majorization is much
strong condition. If all elements are incomparable, then P -majorization forces all elements
of both functions taking same value.

Now we show OWA optimization problem related to majorization for partially ordered
sets.

Let Rn
P denote the set of P -monotone vectors in Rn and b = (b1, b2, · · · , bn) ∈ Rn

P , the
set of P -monotone vectors that are P -majorizated by b is [1],

PM(b) = {x ∈ Rn
P : x P b}. (4.3)

Now, let us consider following optimization problems.

max
n

j=1

wjxj s. t. x ∈ PM(b). (4.4)

Although, the vertex set (4.3) has been characterized in [1], within each block, the value
is not simple average, also no weighted average as in the case of principal majorization

4

 are monotone. Also

For two P -monotone functions f and g defined on P , f is P -majorized by g if


i∈I

f(i) ≤

i∈I

g(j) for each ideal I in (P,≤P ) (4.2)

with equality when I = P . We then write f P g. We should point out that f P g,
provided that there exists permutations π and π of P , such that fπ P gπ , here fπ is the
composition f ◦ π.

Theorem 4.1 ([1]): Assume that f, g : P → R satisfy f P g. Then f  g (classical
majorization) holds. However, the converse does not hold in general.

Example 4.1: The following figure shows an example with poset P = {1, 2, 3, 4}, and
1 ≤P 2, 1 ≤P 3, 2 ≤P 4, 3 ≤P 4. And the values of f f (= fπ) and g are defined as in
Figure 4.1. It is clear that all f , f  and g are monotone. Also f (1) = 10 ≤ g(1) = 10,
f (1) + f (2) = 10 + 8 ≤ g(1) + g(2) = 10 + 9, in the same way, 10 + 10 ≤ 10 + 10,
10 + 8 + 10 ≤ 10 + 9 + 10, 10 + 8 + 10 + 1 = 10 + 9 + 10 + 0. Therefore, f  P g. Since f 

is a permutation of f , we also have f P g. By above theorem, we have f   g and f  g.
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To have a more comprehensive understanding of P -majorization, a simple example is
given in [1]. If P consists two incomparable elements, and let f = (1, 1), g = (2, 0). Then
f  g, but f P g/ . Therefore, compare classical majorization, P -majorization is much
strong condition. If all elements are incomparable, then P -majorization forces all elements
of both functions taking same value.

Now we show OWA optimization problem related to majorization for partially ordered
sets.

Let Rn
P denote the set of P -monotone vectors in Rn and b = (b1, b2, · · · , bn) ∈ Rn

P , the
set of P -monotone vectors that are P -majorizated by b is [1],

PM(b) = {x ∈ Rn
P : x P b}. (4.3)

Now, let us consider following optimization problems.

max
n

j=1

wjxj s. t. x ∈ PM(b). (4.4)

Although, the vertex set (4.3) has been characterized in [1], within each block, the value
is not simple average, also no weighted average as in the case of principal majorization
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For two P -monotone functions f and g defined on P , f is P -majorized by g if


i∈I

f(i) ≤

i∈I

g(j) for each ideal I in (P,≤P ) (4.2)

with equality when I = P . We then write f P g. We should point out that f P g,
provided that there exists permutations π and π of P , such that fπ P gπ , here fπ is the
composition f ◦ π.

Theorem 4.1 ([1]): Assume that f, g : P → R satisfy f P g. Then f  g (classical
majorization) holds. However, the converse does not hold in general.

Example 4.1: The following figure shows an example with poset P = {1, 2, 3, 4}, and
1 ≤P 2, 1 ≤P 3, 2 ≤P 4, 3 ≤P 4. And the values of f f (= fπ) and g are defined as in
Figure 4.1. It is clear that all f , f  and g are monotone. Also f (1) = 10 ≤ g(1) = 10,
f (1) + f (2) = 10 + 8 ≤ g(1) + g(2) = 10 + 9, in the same way, 10 + 10 ≤ 10 + 10,
10 + 8 + 10 ≤ 10 + 9 + 10, 10 + 8 + 10 + 1 = 10 + 9 + 10 + 0. Therefore, f  P g. Since f 

is a permutation of f , we also have f P g. By above theorem, we have f   g and f  g.
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To have a more comprehensive understanding of P -majorization, a simple example is
given in [1]. If P consists two incomparable elements, and let f = (1, 1), g = (2, 0). Then
f  g, but f P g/ . Therefore, compare classical majorization, P -majorization is much
strong condition. If all elements are incomparable, then P -majorization forces all elements
of both functions taking same value.

Now we show OWA optimization problem related to majorization for partially ordered
sets.

Let Rn
P denote the set of P -monotone vectors in Rn and b = (b1, b2, · · · , bn) ∈ Rn

P , the
set of P -monotone vectors that are P -majorizated by b is [1],

PM(b) = {x ∈ Rn
P : x P b}. (4.3)

Now, let us consider following optimization problems.

max
n

j=1

wjxj s. t. x ∈ PM(b). (4.4)

Although, the vertex set (4.3) has been characterized in [1], within each block, the value
is not simple average, also no weighted average as in the case of principal majorization
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For two P -monotone functions f and g defined on P , f is P -majorized by g if


i∈I

f(i) ≤

i∈I

g(j) for each ideal I in (P,≤P ) (4.2)

with equality when I = P . We then write f P g. We should point out that f P g,
provided that there exists permutations π and π of P , such that fπ P gπ , here fπ is the
composition f ◦ π.

Theorem 4.1 ([1]): Assume that f, g : P → R satisfy f P g. Then f  g (classical
majorization) holds. However, the converse does not hold in general.

Example 4.1: The following figure shows an example with poset P = {1, 2, 3, 4}, and
1 ≤P 2, 1 ≤P 3, 2 ≤P 4, 3 ≤P 4. And the values of f f (= fπ) and g are defined as in
Figure 4.1. It is clear that all f , f  and g are monotone. Also f (1) = 10 ≤ g(1) = 10,
f (1) + f (2) = 10 + 8 ≤ g(1) + g(2) = 10 + 9, in the same way, 10 + 10 ≤ 10 + 10,
10 + 8 + 10 ≤ 10 + 9 + 10, 10 + 8 + 10 + 1 = 10 + 9 + 10 + 0. Therefore, f  P g. Since f 

is a permutation of f , we also have f P g. By above theorem, we have f   g and f  g.
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Figure 4.1. The Hasse diagram of P , and corresponding f P g

To have a more comprehensive understanding of P -majorization, a simple example is
given in [1]. If P consists two incomparable elements, and let f = (1, 1), g = (2, 0). Then
f  g, but f P g/ . Therefore, compare classical majorization, P -majorization is much
strong condition. If all elements are incomparable, then P -majorization forces all elements
of both functions taking same value.

Now we show OWA optimization problem related to majorization for partially ordered
sets.

Let Rn
P denote the set of P -monotone vectors in Rn and b = (b1, b2, · · · , bn) ∈ Rn

P , the
set of P -monotone vectors that are P -majorizated by b is [1],

PM(b) = {x ∈ Rn
P : x P b}. (4.3)

Now, let us consider following optimization problems.

max
n

j=1

wjxj s. t. x ∈ PM(b). (4.4)

Although, the vertex set (4.3) has been characterized in [1], within each block, the value
is not simple average, also no weighted average as in the case of principal majorization
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For two P -monotone functions f and g defined on P , f is P -majorized by g if


i∈I

f(i) ≤

i∈I

g(j) for each ideal I in (P,≤P ) (4.2)

with equality when I = P . We then write f P g. We should point out that f P g,
provided that there exists permutations π and π of P , such that fπ P gπ , here fπ is the
composition f ◦ π.

Theorem 4.1 ([1]): Assume that f, g : P → R satisfy f P g. Then f  g (classical
majorization) holds. However, the converse does not hold in general.

Example 4.1: The following figure shows an example with poset P = {1, 2, 3, 4}, and
1 ≤P 2, 1 ≤P 3, 2 ≤P 4, 3 ≤P 4. And the values of f f (= fπ) and g are defined as in
Figure 4.1. It is clear that all f , f  and g are monotone. Also f (1) = 10 ≤ g(1) = 10,
f (1) + f (2) = 10 + 8 ≤ g(1) + g(2) = 10 + 9, in the same way, 10 + 10 ≤ 10 + 10,
10 + 8 + 10 ≤ 10 + 9 + 10, 10 + 8 + 10 + 1 = 10 + 9 + 10 + 0. Therefore, f  P g. Since f 

is a permutation of f , we also have f P g. By above theorem, we have f   g and f  g.
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Figure 4.1. The Hasse diagram of P , and corresponding f P g

To have a more comprehensive understanding of P -majorization, a simple example is
given in [1]. If P consists two incomparable elements, and let f = (1, 1), g = (2, 0). Then
f  g, but f P g/ . Therefore, compare classical majorization, P -majorization is much
strong condition. If all elements are incomparable, then P -majorization forces all elements
of both functions taking same value.

Now we show OWA optimization problem related to majorization for partially ordered
sets.

Let Rn
P denote the set of P -monotone vectors in Rn and b = (b1, b2, · · · , bn) ∈ Rn

P , the
set of P -monotone vectors that are P -majorizated by b is [1],

PM(b) = {x ∈ Rn
P : x P b}. (4.3)

Now, let us consider following optimization problems.

max
n

j=1

wjxj s. t. x ∈ PM(b). (4.4)

Although, the vertex set (4.3) has been characterized in [1], within each block, the value
is not simple average, also no weighted average as in the case of principal majorization
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For two P -monotone functions f and g defined on P , f is P -majorized by g if


i∈I

f(i) ≤

i∈I

g(j) for each ideal I in (P,≤P ) (4.2)

with equality when I = P . We then write f P g. We should point out that f P g,
provided that there exists permutations π and π of P , such that fπ P gπ , here fπ is the
composition f ◦ π.

Theorem 4.1 ([1]): Assume that f, g : P → R satisfy f P g. Then f  g (classical
majorization) holds. However, the converse does not hold in general.

Example 4.1: The following figure shows an example with poset P = {1, 2, 3, 4}, and
1 ≤P 2, 1 ≤P 3, 2 ≤P 4, 3 ≤P 4. And the values of f f (= fπ) and g are defined as in
Figure 4.1. It is clear that all f , f  and g are monotone. Also f (1) = 10 ≤ g(1) = 10,
f (1) + f (2) = 10 + 8 ≤ g(1) + g(2) = 10 + 9, in the same way, 10 + 10 ≤ 10 + 10,
10 + 8 + 10 ≤ 10 + 9 + 10, 10 + 8 + 10 + 1 = 10 + 9 + 10 + 0. Therefore, f  P g. Since f 

is a permutation of f , we also have f P g. By above theorem, we have f   g and f  g.
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Figure 4.1. The Hasse diagram of P , and corresponding f P g

To have a more comprehensive understanding of P -majorization, a simple example is
given in [1]. If P consists two incomparable elements, and let f = (1, 1), g = (2, 0). Then
f  g, but f P g/ . Therefore, compare classical majorization, P -majorization is much
strong condition. If all elements are incomparable, then P -majorization forces all elements
of both functions taking same value.

Now we show OWA optimization problem related to majorization for partially ordered
sets.

Let Rn
P denote the set of P -monotone vectors in Rn and b = (b1, b2, · · · , bn) ∈ Rn

P , the
set of P -monotone vectors that are P -majorizated by b is [1],

PM(b) = {x ∈ Rn
P : x P b}. (4.3)

Now, let us consider following optimization problems.

max
n

j=1

wjxj s. t. x ∈ PM(b). (4.4)

Although, the vertex set (4.3) has been characterized in [1], within each block, the value
is not simple average, also no weighted average as in the case of principal majorization
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For two P -monotone functions f and g defined on P , f is P -majorized by g if


i∈I

f(i) ≤

i∈I

g(j) for each ideal I in (P,≤P ) (4.2)

with equality when I = P . We then write f P g. We should point out that f P g,
provided that there exists permutations π and π of P , such that fπ P gπ , here fπ is the
composition f ◦ π.

Theorem 4.1 ([1]): Assume that f, g : P → R satisfy f P g. Then f  g (classical
majorization) holds. However, the converse does not hold in general.

Example 4.1: The following figure shows an example with poset P = {1, 2, 3, 4}, and
1 ≤P 2, 1 ≤P 3, 2 ≤P 4, 3 ≤P 4. And the values of f f (= fπ) and g are defined as in
Figure 4.1. It is clear that all f , f  and g are monotone. Also f (1) = 10 ≤ g(1) = 10,
f (1) + f (2) = 10 + 8 ≤ g(1) + g(2) = 10 + 9, in the same way, 10 + 10 ≤ 10 + 10,
10 + 8 + 10 ≤ 10 + 9 + 10, 10 + 8 + 10 + 1 = 10 + 9 + 10 + 0. Therefore, f  P g. Since f 

is a permutation of f , we also have f P g. By above theorem, we have f   g and f  g.
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Figure 4.1. The Hasse diagram of P , and corresponding f P g

To have a more comprehensive understanding of P -majorization, a simple example is
given in [1]. If P consists two incomparable elements, and let f = (1, 1), g = (2, 0). Then
f  g, but f P g/ . Therefore, compare classical majorization, P -majorization is much
strong condition. If all elements are incomparable, then P -majorization forces all elements
of both functions taking same value.

Now we show OWA optimization problem related to majorization for partially ordered
sets.

Let Rn
P denote the set of P -monotone vectors in Rn and b = (b1, b2, · · · , bn) ∈ Rn

P , the
set of P -monotone vectors that are P -majorizated by b is [1],

PM(b) = {x ∈ Rn
P : x P b}. (4.3)

Now, let us consider following optimization problems.

max
n

j=1

wjxj s. t. x ∈ PM(b). (4.4)

Although, the vertex set (4.3) has been characterized in [1], within each block, the value
is not simple average, also no weighted average as in the case of principal majorization
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For two P -monotone functions f and g defined on P , f is P -majorized by g if


i∈I

f(i) ≤

i∈I

g(j) for each ideal I in (P,≤P ) (4.2)

with equality when I = P . We then write f P g. We should point out that f P g,
provided that there exists permutations π and π of P , such that fπ P gπ , here fπ is the
composition f ◦ π.

Theorem 4.1 ([1]): Assume that f, g : P → R satisfy f P g. Then f  g (classical
majorization) holds. However, the converse does not hold in general.

Example 4.1: The following figure shows an example with poset P = {1, 2, 3, 4}, and
1 ≤P 2, 1 ≤P 3, 2 ≤P 4, 3 ≤P 4. And the values of f f (= fπ) and g are defined as in
Figure 4.1. It is clear that all f , f  and g are monotone. Also f (1) = 10 ≤ g(1) = 10,
f (1) + f (2) = 10 + 8 ≤ g(1) + g(2) = 10 + 9, in the same way, 10 + 10 ≤ 10 + 10,
10 + 8 + 10 ≤ 10 + 9 + 10, 10 + 8 + 10 + 1 = 10 + 9 + 10 + 0. Therefore, f  P g. Since f 

is a permutation of f , we also have f P g. By above theorem, we have f   g and f  g.
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Figure 4.1. The Hasse diagram of P , and corresponding f P g

To have a more comprehensive understanding of P -majorization, a simple example is
given in [1]. If P consists two incomparable elements, and let f = (1, 1), g = (2, 0). Then
f  g, but f P g/ . Therefore, compare classical majorization, P -majorization is much
strong condition. If all elements are incomparable, then P -majorization forces all elements
of both functions taking same value.

Now we show OWA optimization problem related to majorization for partially ordered
sets.

Let Rn
P denote the set of P -monotone vectors in Rn and b = (b1, b2, · · · , bn) ∈ Rn

P , the
set of P -monotone vectors that are P -majorizated by b is [1],

PM(b) = {x ∈ Rn
P : x P b}. (4.3)

Now, let us consider following optimization problems.

max
n

j=1

wjxj s. t. x ∈ PM(b). (4.4)

Although, the vertex set (4.3) has been characterized in [1], within each block, the value
is not simple average, also no weighted average as in the case of principal majorization
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For two P -monotone functions f and g defined on P , f is P -majorized by g if


i∈I

f(i) ≤

i∈I

g(j) for each ideal I in (P,≤P ) (4.2)

with equality when I = P . We then write f P g. We should point out that f P g,
provided that there exists permutations π and π of P , such that fπ P gπ , here fπ is the
composition f ◦ π.

Theorem 4.1 ([1]): Assume that f, g : P → R satisfy f P g. Then f  g (classical
majorization) holds. However, the converse does not hold in general.

Example 4.1: The following figure shows an example with poset P = {1, 2, 3, 4}, and
1 ≤P 2, 1 ≤P 3, 2 ≤P 4, 3 ≤P 4. And the values of f f (= fπ) and g are defined as in
Figure 4.1. It is clear that all f , f  and g are monotone. Also f (1) = 10 ≤ g(1) = 10,
f (1) + f (2) = 10 + 8 ≤ g(1) + g(2) = 10 + 9, in the same way, 10 + 10 ≤ 10 + 10,
10 + 8 + 10 ≤ 10 + 9 + 10, 10 + 8 + 10 + 1 = 10 + 9 + 10 + 0. Therefore, f  P g. Since f 

is a permutation of f , we also have f P g. By above theorem, we have f   g and f  g.
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Figure 4.1. The Hasse diagram of P , and corresponding f P g

To have a more comprehensive understanding of P -majorization, a simple example is
given in [1]. If P consists two incomparable elements, and let f = (1, 1), g = (2, 0). Then
f  g, but f P g/ . Therefore, compare classical majorization, P -majorization is much
strong condition. If all elements are incomparable, then P -majorization forces all elements
of both functions taking same value.

Now we show OWA optimization problem related to majorization for partially ordered
sets.

Let Rn
P denote the set of P -monotone vectors in Rn and b = (b1, b2, · · · , bn) ∈ Rn

P , the
set of P -monotone vectors that are P -majorizated by b is [1],

PM(b) = {x ∈ Rn
P : x P b}. (4.3)

Now, let us consider following optimization problems.

max
n

j=1

wjxj s. t. x ∈ PM(b). (4.4)

Although, the vertex set (4.3) has been characterized in [1], within each block, the value
is not simple average, also no weighted average as in the case of principal majorization
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For two P -monotone functions f and g defined on P , f is P -majorized by g if


i∈I

f(i) ≤

i∈I

g(j) for each ideal I in (P,≤P ) (4.2)

with equality when I = P . We then write f P g. We should point out that f P g,
provided that there exists permutations π and π of P , such that fπ P gπ , here fπ is the
composition f ◦ π.

Theorem 4.1 ([1]): Assume that f, g : P → R satisfy f P g. Then f  g (classical
majorization) holds. However, the converse does not hold in general.

Example 4.1: The following figure shows an example with poset P = {1, 2, 3, 4}, and
1 ≤P 2, 1 ≤P 3, 2 ≤P 4, 3 ≤P 4. And the values of f f (= fπ) and g are defined as in
Figure 4.1. It is clear that all f , f  and g are monotone. Also f (1) = 10 ≤ g(1) = 10,
f (1) + f (2) = 10 + 8 ≤ g(1) + g(2) = 10 + 9, in the same way, 10 + 10 ≤ 10 + 10,
10 + 8 + 10 ≤ 10 + 9 + 10, 10 + 8 + 10 + 1 = 10 + 9 + 10 + 0. Therefore, f  P g. Since f 

is a permutation of f , we also have f P g. By above theorem, we have f   g and f  g.
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Figure 4.1. The Hasse diagram of P , and corresponding f P g

To have a more comprehensive understanding of P -majorization, a simple example is
given in [1]. If P consists two incomparable elements, and let f = (1, 1), g = (2, 0). Then
f  g, but f P g/ . Therefore, compare classical majorization, P -majorization is much
strong condition. If all elements are incomparable, then P -majorization forces all elements
of both functions taking same value.

Now we show OWA optimization problem related to majorization for partially ordered
sets.

Let Rn
P denote the set of P -monotone vectors in Rn and b = (b1, b2, · · · , bn) ∈ Rn

P , the
set of P -monotone vectors that are P -majorizated by b is [1],

PM(b) = {x ∈ Rn
P : x P b}. (4.3)

Now, let us consider following optimization problems.

max
n

j=1

wjxj s. t. x ∈ PM(b). (4.4)

Although, the vertex set (4.3) has been characterized in [1], within each block, the value
is not simple average, also no weighted average as in the case of principal majorization
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For two P -monotone functions f and g defined on P , f is P -majorized by g if


i∈I

f(i) ≤

i∈I

g(j) for each ideal I in (P,≤P ) (4.2)

with equality when I = P . We then write f P g. We should point out that f P g,
provided that there exists permutations π and π of P , such that fπ P gπ , here fπ is the
composition f ◦ π.

Theorem 4.1 ([1]): Assume that f, g : P → R satisfy f P g. Then f  g (classical
majorization) holds. However, the converse does not hold in general.

Example 4.1: The following figure shows an example with poset P = {1, 2, 3, 4}, and
1 ≤P 2, 1 ≤P 3, 2 ≤P 4, 3 ≤P 4. And the values of f f (= fπ) and g are defined as in
Figure 4.1. It is clear that all f , f  and g are monotone. Also f (1) = 10 ≤ g(1) = 10,
f (1) + f (2) = 10 + 8 ≤ g(1) + g(2) = 10 + 9, in the same way, 10 + 10 ≤ 10 + 10,
10 + 8 + 10 ≤ 10 + 9 + 10, 10 + 8 + 10 + 1 = 10 + 9 + 10 + 0. Therefore, f  P g. Since f 

is a permutation of f , we also have f P g. By above theorem, we have f   g and f  g.
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Figure 4.1. The Hasse diagram of P , and corresponding f P g

To have a more comprehensive understanding of P -majorization, a simple example is
given in [1]. If P consists two incomparable elements, and let f = (1, 1), g = (2, 0). Then
f  g, but f P g/ . Therefore, compare classical majorization, P -majorization is much
strong condition. If all elements are incomparable, then P -majorization forces all elements
of both functions taking same value.

Now we show OWA optimization problem related to majorization for partially ordered
sets.

Let Rn
P denote the set of P -monotone vectors in Rn and b = (b1, b2, · · · , bn) ∈ Rn

P , the
set of P -monotone vectors that are P -majorizated by b is [1],

PM(b) = {x ∈ Rn
P : x P b}. (4.3)

Now, let us consider following optimization problems.

max
n

j=1

wjxj s. t. x ∈ PM(b). (4.4)

Although, the vertex set (4.3) has been characterized in [1], within each block, the value
is not simple average, also no weighted average as in the case of principal majorization
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10+9+10, 10+8+10+1=10+9+10+0. Therefore, 

For two P -monotone functions f and g defined on P , f is P -majorized by g if


i∈I

f(i) ≤

i∈I

g(j) for each ideal I in (P,≤P ) (4.2)

with equality when I = P . We then write f P g. We should point out that f P g,
provided that there exists permutations π and π of P , such that fπ P gπ , here fπ is the
composition f ◦ π.

Theorem 4.1 ([1]): Assume that f, g : P → R satisfy f P g. Then f  g (classical
majorization) holds. However, the converse does not hold in general.

Example 4.1: The following figure shows an example with poset P = {1, 2, 3, 4}, and
1 ≤P 2, 1 ≤P 3, 2 ≤P 4, 3 ≤P 4. And the values of f f (= fπ) and g are defined as in
Figure 4.1. It is clear that all f , f  and g are monotone. Also f (1) = 10 ≤ g(1) = 10,
f (1) + f (2) = 10 + 8 ≤ g(1) + g(2) = 10 + 9, in the same way, 10 + 10 ≤ 10 + 10,
10 + 8 + 10 ≤ 10 + 9 + 10, 10 + 8 + 10 + 1 = 10 + 9 + 10 + 0. Therefore, f  P g. Since f 

is a permutation of f , we also have f P g. By above theorem, we have f   g and f  g.
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Figure 4.1. The Hasse diagram of P , and corresponding f P g

To have a more comprehensive understanding of P -majorization, a simple example is
given in [1]. If P consists two incomparable elements, and let f = (1, 1), g = (2, 0). Then
f  g, but f P g/ . Therefore, compare classical majorization, P -majorization is much
strong condition. If all elements are incomparable, then P -majorization forces all elements
of both functions taking same value.

Now we show OWA optimization problem related to majorization for partially ordered
sets.

Let Rn
P denote the set of P -monotone vectors in Rn and b = (b1, b2, · · · , bn) ∈ Rn

P , the
set of P -monotone vectors that are P -majorizated by b is [1],

PM(b) = {x ∈ Rn
P : x P b}. (4.3)

Now, let us consider following optimization problems.

max
n

j=1

wjxj s. t. x ∈ PM(b). (4.4)

Although, the vertex set (4.3) has been characterized in [1], within each block, the value
is not simple average, also no weighted average as in the case of principal majorization
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For two P -monotone functions f and g defined on P , f is P -majorized by g if


i∈I

f(i) ≤

i∈I

g(j) for each ideal I in (P,≤P ) (4.2)

with equality when I = P . We then write f P g. We should point out that f P g,
provided that there exists permutations π and π of P , such that fπ P gπ , here fπ is the
composition f ◦ π.

Theorem 4.1 ([1]): Assume that f, g : P → R satisfy f P g. Then f  g (classical
majorization) holds. However, the converse does not hold in general.

Example 4.1: The following figure shows an example with poset P = {1, 2, 3, 4}, and
1 ≤P 2, 1 ≤P 3, 2 ≤P 4, 3 ≤P 4. And the values of f f (= fπ) and g are defined as in
Figure 4.1. It is clear that all f , f  and g are monotone. Also f (1) = 10 ≤ g(1) = 10,
f (1) + f (2) = 10 + 8 ≤ g(1) + g(2) = 10 + 9, in the same way, 10 + 10 ≤ 10 + 10,
10 + 8 + 10 ≤ 10 + 9 + 10, 10 + 8 + 10 + 1 = 10 + 9 + 10 + 0. Therefore, f  P g. Since f 

is a permutation of f , we also have f P g. By above theorem, we have f   g and f  g.
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Figure 4.1. The Hasse diagram of P , and corresponding f P g

To have a more comprehensive understanding of P -majorization, a simple example is
given in [1]. If P consists two incomparable elements, and let f = (1, 1), g = (2, 0). Then
f  g, but f P g/ . Therefore, compare classical majorization, P -majorization is much
strong condition. If all elements are incomparable, then P -majorization forces all elements
of both functions taking same value.

Now we show OWA optimization problem related to majorization for partially ordered
sets.

Let Rn
P denote the set of P -monotone vectors in Rn and b = (b1, b2, · · · , bn) ∈ Rn

P , the
set of P -monotone vectors that are P -majorizated by b is [1],

PM(b) = {x ∈ Rn
P : x P b}. (4.3)

Now, let us consider following optimization problems.

max
n

j=1

wjxj s. t. x ∈ PM(b). (4.4)

Although, the vertex set (4.3) has been characterized in [1], within each block, the value
is not simple average, also no weighted average as in the case of principal majorization
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. Since

For two P -monotone functions f and g defined on P , f is P -majorized by g if


i∈I

f(i) ≤

i∈I

g(j) for each ideal I in (P,≤P ) (4.2)

with equality when I = P . We then write f P g. We should point out that f P g,
provided that there exists permutations π and π of P , such that fπ P gπ , here fπ is the
composition f ◦ π.

Theorem 4.1 ([1]): Assume that f, g : P → R satisfy f P g. Then f  g (classical
majorization) holds. However, the converse does not hold in general.

Example 4.1: The following figure shows an example with poset P = {1, 2, 3, 4}, and
1 ≤P 2, 1 ≤P 3, 2 ≤P 4, 3 ≤P 4. And the values of f f (= fπ) and g are defined as in
Figure 4.1. It is clear that all f , f  and g are monotone. Also f (1) = 10 ≤ g(1) = 10,
f (1) + f (2) = 10 + 8 ≤ g(1) + g(2) = 10 + 9, in the same way, 10 + 10 ≤ 10 + 10,
10 + 8 + 10 ≤ 10 + 9 + 10, 10 + 8 + 10 + 1 = 10 + 9 + 10 + 0. Therefore, f  P g. Since f 

is a permutation of f , we also have f P g. By above theorem, we have f   g and f  g.
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Figure 4.1. The Hasse diagram of P , and corresponding f P g

To have a more comprehensive understanding of P -majorization, a simple example is
given in [1]. If P consists two incomparable elements, and let f = (1, 1), g = (2, 0). Then
f  g, but f P g/ . Therefore, compare classical majorization, P -majorization is much
strong condition. If all elements are incomparable, then P -majorization forces all elements
of both functions taking same value.

Now we show OWA optimization problem related to majorization for partially ordered
sets.

Let Rn
P denote the set of P -monotone vectors in Rn and b = (b1, b2, · · · , bn) ∈ Rn

P , the
set of P -monotone vectors that are P -majorizated by b is [1],

PM(b) = {x ∈ Rn
P : x P b}. (4.3)

Now, let us consider following optimization problems.

max
n

j=1

wjxj s. t. x ∈ PM(b). (4.4)

Although, the vertex set (4.3) has been characterized in [1], within each block, the value
is not simple average, also no weighted average as in the case of principal majorization
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For two P -monotone functions f and g defined on P , f is P -majorized by g if


i∈I

f(i) ≤

i∈I

g(j) for each ideal I in (P,≤P ) (4.2)

with equality when I = P . We then write f P g. We should point out that f P g,
provided that there exists permutations π and π of P , such that fπ P gπ , here fπ is the
composition f ◦ π.

Theorem 4.1 ([1]): Assume that f, g : P → R satisfy f P g. Then f  g (classical
majorization) holds. However, the converse does not hold in general.

Example 4.1: The following figure shows an example with poset P = {1, 2, 3, 4}, and
1 ≤P 2, 1 ≤P 3, 2 ≤P 4, 3 ≤P 4. And the values of f f (= fπ) and g are defined as in
Figure 4.1. It is clear that all f , f  and g are monotone. Also f (1) = 10 ≤ g(1) = 10,
f (1) + f (2) = 10 + 8 ≤ g(1) + g(2) = 10 + 9, in the same way, 10 + 10 ≤ 10 + 10,
10 + 8 + 10 ≤ 10 + 9 + 10, 10 + 8 + 10 + 1 = 10 + 9 + 10 + 0. Therefore, f  P g. Since f 

is a permutation of f , we also have f P g. By above theorem, we have f   g and f  g.
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To have a more comprehensive understanding of P -majorization, a simple example is
given in [1]. If P consists two incomparable elements, and let f = (1, 1), g = (2, 0). Then
f  g, but f P g/ . Therefore, compare classical majorization, P -majorization is much
strong condition. If all elements are incomparable, then P -majorization forces all elements
of both functions taking same value.

Now we show OWA optimization problem related to majorization for partially ordered
sets.

Let Rn
P denote the set of P -monotone vectors in Rn and b = (b1, b2, · · · , bn) ∈ Rn

P , the
set of P -monotone vectors that are P -majorizated by b is [1],

PM(b) = {x ∈ Rn
P : x P b}. (4.3)

Now, let us consider following optimization problems.

max
n

j=1

wjxj s. t. x ∈ PM(b). (4.4)

Although, the vertex set (4.3) has been characterized in [1], within each block, the value
is not simple average, also no weighted average as in the case of principal majorization

4

, we also have 

For two P -monotone functions f and g defined on P , f is P -majorized by g if


i∈I

f(i) ≤

i∈I

g(j) for each ideal I in (P,≤P ) (4.2)

with equality when I = P . We then write f P g. We should point out that f P g,
provided that there exists permutations π and π of P , such that fπ P gπ , here fπ is the
composition f ◦ π.

Theorem 4.1 ([1]): Assume that f, g : P → R satisfy f P g. Then f  g (classical
majorization) holds. However, the converse does not hold in general.

Example 4.1: The following figure shows an example with poset P = {1, 2, 3, 4}, and
1 ≤P 2, 1 ≤P 3, 2 ≤P 4, 3 ≤P 4. And the values of f f (= fπ) and g are defined as in
Figure 4.1. It is clear that all f , f  and g are monotone. Also f (1) = 10 ≤ g(1) = 10,
f (1) + f (2) = 10 + 8 ≤ g(1) + g(2) = 10 + 9, in the same way, 10 + 10 ≤ 10 + 10,
10 + 8 + 10 ≤ 10 + 9 + 10, 10 + 8 + 10 + 1 = 10 + 9 + 10 + 0. Therefore, f  P g. Since f 

is a permutation of f , we also have f P g. By above theorem, we have f   g and f  g.
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To have a more comprehensive understanding of P -majorization, a simple example is
given in [1]. If P consists two incomparable elements, and let f = (1, 1), g = (2, 0). Then
f  g, but f P g/ . Therefore, compare classical majorization, P -majorization is much
strong condition. If all elements are incomparable, then P -majorization forces all elements
of both functions taking same value.

Now we show OWA optimization problem related to majorization for partially ordered
sets.

Let Rn
P denote the set of P -monotone vectors in Rn and b = (b1, b2, · · · , bn) ∈ Rn

P , the
set of P -monotone vectors that are P -majorizated by b is [1],

PM(b) = {x ∈ Rn
P : x P b}. (4.3)

Now, let us consider following optimization problems.

max
n

j=1

wjxj s. t. x ∈ PM(b). (4.4)

Although, the vertex set (4.3) has been characterized in [1], within each block, the value
is not simple average, also no weighted average as in the case of principal majorization
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. By above theorem, we have 

For two P -monotone functions f and g defined on P , f is P -majorized by g if


i∈I

f(i) ≤

i∈I

g(j) for each ideal I in (P,≤P ) (4.2)

with equality when I = P . We then write f P g. We should point out that f P g,
provided that there exists permutations π and π of P , such that fπ P gπ , here fπ is the
composition f ◦ π.

Theorem 4.1 ([1]): Assume that f, g : P → R satisfy f P g. Then f  g (classical
majorization) holds. However, the converse does not hold in general.

Example 4.1: The following figure shows an example with poset P = {1, 2, 3, 4}, and
1 ≤P 2, 1 ≤P 3, 2 ≤P 4, 3 ≤P 4. And the values of f f (= fπ) and g are defined as in
Figure 4.1. It is clear that all f , f  and g are monotone. Also f (1) = 10 ≤ g(1) = 10,
f (1) + f (2) = 10 + 8 ≤ g(1) + g(2) = 10 + 9, in the same way, 10 + 10 ≤ 10 + 10,
10 + 8 + 10 ≤ 10 + 9 + 10, 10 + 8 + 10 + 1 = 10 + 9 + 10 + 0. Therefore, f  P g. Since f 

is a permutation of f , we also have f P g. By above theorem, we have f   g and f  g.
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To have a more comprehensive understanding of P -majorization, a simple example is
given in [1]. If P consists two incomparable elements, and let f = (1, 1), g = (2, 0). Then
f  g, but f P g/ . Therefore, compare classical majorization, P -majorization is much
strong condition. If all elements are incomparable, then P -majorization forces all elements
of both functions taking same value.

Now we show OWA optimization problem related to majorization for partially ordered
sets.

Let Rn
P denote the set of P -monotone vectors in Rn and b = (b1, b2, · · · , bn) ∈ Rn

P , the
set of P -monotone vectors that are P -majorizated by b is [1],

PM(b) = {x ∈ Rn
P : x P b}. (4.3)

Now, let us consider following optimization problems.

max
n

j=1

wjxj s. t. x ∈ PM(b). (4.4)

Although, the vertex set (4.3) has been characterized in [1], within each block, the value
is not simple average, also no weighted average as in the case of principal majorization

4

For two P -monotone functions f and g defined on P , f is P -majorized by g if


i∈I

f(i) ≤

i∈I

g(j) for each ideal I in (P,≤P ) (4.2)

with equality when I = P . We then write f P g. We should point out that f P g,
provided that there exists permutations π and π of P , such that fπ P gπ , here fπ is the
composition f ◦ π.

Theorem 4.1 ([1]): Assume that f, g : P → R satisfy f P g. Then f  g (classical
majorization) holds. However, the converse does not hold in general.

Example 4.1: The following figure shows an example with poset P = {1, 2, 3, 4}, and
1 ≤P 2, 1 ≤P 3, 2 ≤P 4, 3 ≤P 4. And the values of f f (= fπ) and g are defined as in
Figure 4.1. It is clear that all f , f  and g are monotone. Also f (1) = 10 ≤ g(1) = 10,
f (1) + f (2) = 10 + 8 ≤ g(1) + g(2) = 10 + 9, in the same way, 10 + 10 ≤ 10 + 10,
10 + 8 + 10 ≤ 10 + 9 + 10, 10 + 8 + 10 + 1 = 10 + 9 + 10 + 0. Therefore, f  P g. Since f 

is a permutation of f , we also have f P g. By above theorem, we have f   g and f  g.
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To have a more comprehensive understanding of P -majorization, a simple example is
given in [1]. If P consists two incomparable elements, and let f = (1, 1), g = (2, 0). Then
f  g, but f P g/ . Therefore, compare classical majorization, P -majorization is much
strong condition. If all elements are incomparable, then P -majorization forces all elements
of both functions taking same value.

Now we show OWA optimization problem related to majorization for partially ordered
sets.

Let Rn
P denote the set of P -monotone vectors in Rn and b = (b1, b2, · · · , bn) ∈ Rn

P , the
set of P -monotone vectors that are P -majorizated by b is [1],

PM(b) = {x ∈ Rn
P : x P b}. (4.3)

Now, let us consider following optimization problems.

max
n

j=1

wjxj s. t. x ∈ PM(b). (4.4)

Although, the vertex set (4.3) has been characterized in [1], within each block, the value
is not simple average, also no weighted average as in the case of principal majorization
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For two P -monotone functions f and g defined on P , f is P -majorized by g if


i∈I

f(i) ≤

i∈I

g(j) for each ideal I in (P,≤P ) (4.2)

with equality when I = P . We then write f P g. We should point out that f P g,
provided that there exists permutations π and π of P , such that fπ P gπ , here fπ is the
composition f ◦ π.

Theorem 4.1 ([1]): Assume that f, g : P → R satisfy f P g. Then f  g (classical
majorization) holds. However, the converse does not hold in general.

Example 4.1: The following figure shows an example with poset P = {1, 2, 3, 4}, and
1 ≤P 2, 1 ≤P 3, 2 ≤P 4, 3 ≤P 4. And the values of f f (= fπ) and g are defined as in
Figure 4.1. It is clear that all f , f  and g are monotone. Also f (1) = 10 ≤ g(1) = 10,
f (1) + f (2) = 10 + 8 ≤ g(1) + g(2) = 10 + 9, in the same way, 10 + 10 ≤ 10 + 10,
10 + 8 + 10 ≤ 10 + 9 + 10, 10 + 8 + 10 + 1 = 10 + 9 + 10 + 0. Therefore, f  P g. Since f 

is a permutation of f , we also have f P g. By above theorem, we have f   g and f  g.
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To have a more comprehensive understanding of P -majorization, a simple example is
given in [1]. If P consists two incomparable elements, and let f = (1, 1), g = (2, 0). Then
f  g, but f P g/ . Therefore, compare classical majorization, P -majorization is much
strong condition. If all elements are incomparable, then P -majorization forces all elements
of both functions taking same value.

Now we show OWA optimization problem related to majorization for partially ordered
sets.

Let Rn
P denote the set of P -monotone vectors in Rn and b = (b1, b2, · · · , bn) ∈ Rn

P , the
set of P -monotone vectors that are P -majorizated by b is [1],

PM(b) = {x ∈ Rn
P : x P b}. (4.3)

Now, let us consider following optimization problems.

max
n

j=1

wjxj s. t. x ∈ PM(b). (4.4)

Although, the vertex set (4.3) has been characterized in [1], within each block, the value
is not simple average, also no weighted average as in the case of principal majorization
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For two P -monotone functions f and g defined on P , f is P -majorized by g if


i∈I

f(i) ≤

i∈I

g(j) for each ideal I in (P,≤P ) (4.2)

with equality when I = P . We then write f P g. We should point out that f P g,
provided that there exists permutations π and π of P , such that fπ P gπ , here fπ is the
composition f ◦ π.

Theorem 4.1 ([1]): Assume that f, g : P → R satisfy f P g. Then f  g (classical
majorization) holds. However, the converse does not hold in general.

Example 4.1: The following figure shows an example with poset P = {1, 2, 3, 4}, and
1 ≤P 2, 1 ≤P 3, 2 ≤P 4, 3 ≤P 4. And the values of f f (= fπ) and g are defined as in
Figure 4.1. It is clear that all f , f  and g are monotone. Also f (1) = 10 ≤ g(1) = 10,
f (1) + f (2) = 10 + 8 ≤ g(1) + g(2) = 10 + 9, in the same way, 10 + 10 ≤ 10 + 10,
10 + 8 + 10 ≤ 10 + 9 + 10, 10 + 8 + 10 + 1 = 10 + 9 + 10 + 0. Therefore, f  P g. Since f 

is a permutation of f , we also have f P g. By above theorem, we have f   g and f  g.
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To have a more comprehensive understanding of P -majorization, a simple example is
given in [1]. If P consists two incomparable elements, and let f = (1, 1), g = (2, 0). Then
f  g, but f P g/ . Therefore, compare classical majorization, P -majorization is much
strong condition. If all elements are incomparable, then P -majorization forces all elements
of both functions taking same value.

Now we show OWA optimization problem related to majorization for partially ordered
sets.

Let Rn
P denote the set of P -monotone vectors in Rn and b = (b1, b2, · · · , bn) ∈ Rn

P , the
set of P -monotone vectors that are P -majorizated by b is [1],

PM(b) = {x ∈ Rn
P : x P b}. (4.3)

Now, let us consider following optimization problems.

max
n

j=1

wjxj s. t. x ∈ PM(b). (4.4)

Although, the vertex set (4.3) has been characterized in [1], within each block, the value
is not simple average, also no weighted average as in the case of principal majorization
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For two P -monotone functions f and g defined on P , f is P -majorized by g if


i∈I

f(i) ≤

i∈I

g(j) for each ideal I in (P,≤P ) (4.2)

with equality when I = P . We then write f P g. We should point out that f P g,
provided that there exists permutations π and π of P , such that fπ P gπ , here fπ is the
composition f ◦ π.

Theorem 4.1 ([1]): Assume that f, g : P → R satisfy f P g. Then f  g (classical
majorization) holds. However, the converse does not hold in general.

Example 4.1: The following figure shows an example with poset P = {1, 2, 3, 4}, and
1 ≤P 2, 1 ≤P 3, 2 ≤P 4, 3 ≤P 4. And the values of f f (= fπ) and g are defined as in
Figure 4.1. It is clear that all f , f  and g are monotone. Also f (1) = 10 ≤ g(1) = 10,
f (1) + f (2) = 10 + 8 ≤ g(1) + g(2) = 10 + 9, in the same way, 10 + 10 ≤ 10 + 10,
10 + 8 + 10 ≤ 10 + 9 + 10, 10 + 8 + 10 + 1 = 10 + 9 + 10 + 0. Therefore, f  P g. Since f 

is a permutation of f , we also have f P g. By above theorem, we have f   g and f  g.
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To have a more comprehensive understanding of P -majorization, a simple example is
given in [1]. If P consists two incomparable elements, and let f = (1, 1), g = (2, 0). Then
f  g, but f P g/ . Therefore, compare classical majorization, P -majorization is much
strong condition. If all elements are incomparable, then P -majorization forces all elements
of both functions taking same value.

Now we show OWA optimization problem related to majorization for partially ordered
sets.

Let Rn
P denote the set of P -monotone vectors in Rn and b = (b1, b2, · · · , bn) ∈ Rn

P , the
set of P -monotone vectors that are P -majorizated by b is [1],

PM(b) = {x ∈ Rn
P : x P b}. (4.3)

Now, let us consider following optimization problems.

max
n

j=1

wjxj s. t. x ∈ PM(b). (4.4)

Although, the vertex set (4.3) has been characterized in [1], within each block, the value
is not simple average, also no weighted average as in the case of principal majorization
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To have a more comprehensive understanding of P-majorization, a simple example is given in [1]. If 
P consists two incomparable elements, and let

For two P -monotone functions f and g defined on P , f is P -majorized by g if


i∈I

f(i) ≤

i∈I

g(j) for each ideal I in (P,≤P ) (4.2)

with equality when I = P . We then write f P g. We should point out that f P g,
provided that there exists permutations π and π of P , such that fπ P gπ , here fπ is the
composition f ◦ π.

Theorem 4.1 ([1]): Assume that f, g : P → R satisfy f P g. Then f  g (classical
majorization) holds. However, the converse does not hold in general.

Example 4.1: The following figure shows an example with poset P = {1, 2, 3, 4}, and
1 ≤P 2, 1 ≤P 3, 2 ≤P 4, 3 ≤P 4. And the values of f f (= fπ) and g are defined as in
Figure 4.1. It is clear that all f , f  and g are monotone. Also f (1) = 10 ≤ g(1) = 10,
f (1) + f (2) = 10 + 8 ≤ g(1) + g(2) = 10 + 9, in the same way, 10 + 10 ≤ 10 + 10,
10 + 8 + 10 ≤ 10 + 9 + 10, 10 + 8 + 10 + 1 = 10 + 9 + 10 + 0. Therefore, f  P g. Since f 

is a permutation of f , we also have f P g. By above theorem, we have f   g and f  g.
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To have a more comprehensive understanding of P -majorization, a simple example is
given in [1]. If P consists two incomparable elements, and let f = (1, 1), g = (2, 0). Then
f  g, but f P g/ . Therefore, compare classical majorization, P -majorization is much
strong condition. If all elements are incomparable, then P -majorization forces all elements
of both functions taking same value.

Now we show OWA optimization problem related to majorization for partially ordered
sets.

Let Rn
P denote the set of P -monotone vectors in Rn and b = (b1, b2, · · · , bn) ∈ Rn

P , the
set of P -monotone vectors that are P -majorizated by b is [1],

PM(b) = {x ∈ Rn
P : x P b}. (4.3)

Now, let us consider following optimization problems.

max
n

j=1

wjxj s. t. x ∈ PM(b). (4.4)

Although, the vertex set (4.3) has been characterized in [1], within each block, the value
is not simple average, also no weighted average as in the case of principal majorization
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= (1; 1);

For two P -monotone functions f and g defined on P , f is P -majorized by g if


i∈I

f(i) ≤

i∈I

g(j) for each ideal I in (P,≤P ) (4.2)

with equality when I = P . We then write f P g. We should point out that f P g,
provided that there exists permutations π and π of P , such that fπ P gπ , here fπ is the
composition f ◦ π.

Theorem 4.1 ([1]): Assume that f, g : P → R satisfy f P g. Then f  g (classical
majorization) holds. However, the converse does not hold in general.

Example 4.1: The following figure shows an example with poset P = {1, 2, 3, 4}, and
1 ≤P 2, 1 ≤P 3, 2 ≤P 4, 3 ≤P 4. And the values of f f (= fπ) and g are defined as in
Figure 4.1. It is clear that all f , f  and g are monotone. Also f (1) = 10 ≤ g(1) = 10,
f (1) + f (2) = 10 + 8 ≤ g(1) + g(2) = 10 + 9, in the same way, 10 + 10 ≤ 10 + 10,
10 + 8 + 10 ≤ 10 + 9 + 10, 10 + 8 + 10 + 1 = 10 + 9 + 10 + 0. Therefore, f  P g. Since f 

is a permutation of f , we also have f P g. By above theorem, we have f   g and f  g.
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Figure 4.1. The Hasse diagram of P , and corresponding f P g

To have a more comprehensive understanding of P -majorization, a simple example is
given in [1]. If P consists two incomparable elements, and let f = (1, 1), g = (2, 0). Then
f  g, but f P g/ . Therefore, compare classical majorization, P -majorization is much
strong condition. If all elements are incomparable, then P -majorization forces all elements
of both functions taking same value.

Now we show OWA optimization problem related to majorization for partially ordered
sets.

Let Rn
P denote the set of P -monotone vectors in Rn and b = (b1, b2, · · · , bn) ∈ Rn

P , the
set of P -monotone vectors that are P -majorizated by b is [1],

PM(b) = {x ∈ Rn
P : x P b}. (4.3)

Now, let us consider following optimization problems.

max
n

j=1

wjxj s. t. x ∈ PM(b). (4.4)

Although, the vertex set (4.3) has been characterized in [1], within each block, the value
is not simple average, also no weighted average as in the case of principal majorization
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 = (2; 0). Then

For two P -monotone functions f and g defined on P , f is P -majorized by g if


i∈I

f(i) ≤

i∈I

g(j) for each ideal I in (P,≤P ) (4.2)

with equality when I = P . We then write f P g. We should point out that f P g,
provided that there exists permutations π and π of P , such that fπ P gπ , here fπ is the
composition f ◦ π.

Theorem 4.1 ([1]): Assume that f, g : P → R satisfy f P g. Then f  g (classical
majorization) holds. However, the converse does not hold in general.

Example 4.1: The following figure shows an example with poset P = {1, 2, 3, 4}, and
1 ≤P 2, 1 ≤P 3, 2 ≤P 4, 3 ≤P 4. And the values of f f (= fπ) and g are defined as in
Figure 4.1. It is clear that all f , f  and g are monotone. Also f (1) = 10 ≤ g(1) = 10,
f (1) + f (2) = 10 + 8 ≤ g(1) + g(2) = 10 + 9, in the same way, 10 + 10 ≤ 10 + 10,
10 + 8 + 10 ≤ 10 + 9 + 10, 10 + 8 + 10 + 1 = 10 + 9 + 10 + 0. Therefore, f  P g. Since f 

is a permutation of f , we also have f P g. By above theorem, we have f   g and f  g.
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Figure 4.1. The Hasse diagram of P , and corresponding f P g

To have a more comprehensive understanding of P -majorization, a simple example is
given in [1]. If P consists two incomparable elements, and let f = (1, 1), g = (2, 0). Then
f  g, but f P g/ . Therefore, compare classical majorization, P -majorization is much
strong condition. If all elements are incomparable, then P -majorization forces all elements
of both functions taking same value.

Now we show OWA optimization problem related to majorization for partially ordered
sets.

Let Rn
P denote the set of P -monotone vectors in Rn and b = (b1, b2, · · · , bn) ∈ Rn

P , the
set of P -monotone vectors that are P -majorizated by b is [1],

PM(b) = {x ∈ Rn
P : x P b}. (4.3)

Now, let us consider following optimization problems.

max
n

j=1

wjxj s. t. x ∈ PM(b). (4.4)

Although, the vertex set (4.3) has been characterized in [1], within each block, the value
is not simple average, also no weighted average as in the case of principal majorization
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For two P -monotone functions f and g defined on P , f is P -majorized by g if


i∈I

f(i) ≤

i∈I

g(j) for each ideal I in (P,≤P ) (4.2)

with equality when I = P . We then write f P g. We should point out that f P g,
provided that there exists permutations π and π of P , such that fπ P gπ , here fπ is the
composition f ◦ π.

Theorem 4.1 ([1]): Assume that f, g : P → R satisfy f P g. Then f  g (classical
majorization) holds. However, the converse does not hold in general.

Example 4.1: The following figure shows an example with poset P = {1, 2, 3, 4}, and
1 ≤P 2, 1 ≤P 3, 2 ≤P 4, 3 ≤P 4. And the values of f f (= fπ) and g are defined as in
Figure 4.1. It is clear that all f , f  and g are monotone. Also f (1) = 10 ≤ g(1) = 10,
f (1) + f (2) = 10 + 8 ≤ g(1) + g(2) = 10 + 9, in the same way, 10 + 10 ≤ 10 + 10,
10 + 8 + 10 ≤ 10 + 9 + 10, 10 + 8 + 10 + 1 = 10 + 9 + 10 + 0. Therefore, f  P g. Since f 

is a permutation of f , we also have f P g. By above theorem, we have f   g and f  g.
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Figure 4.1. The Hasse diagram of P , and corresponding f P g

To have a more comprehensive understanding of P -majorization, a simple example is
given in [1]. If P consists two incomparable elements, and let f = (1, 1), g = (2, 0). Then
f  g, but f P g/ . Therefore, compare classical majorization, P -majorization is much
strong condition. If all elements are incomparable, then P -majorization forces all elements
of both functions taking same value.

Now we show OWA optimization problem related to majorization for partially ordered
sets.

Let Rn
P denote the set of P -monotone vectors in Rn and b = (b1, b2, · · · , bn) ∈ Rn

P , the
set of P -monotone vectors that are P -majorizated by b is [1],

PM(b) = {x ∈ Rn
P : x P b}. (4.3)

Now, let us consider following optimization problems.

max
n

j=1

wjxj s. t. x ∈ PM(b). (4.4)

Although, the vertex set (4.3) has been characterized in [1], within each block, the value
is not simple average, also no weighted average as in the case of principal majorization
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, but

For two P -monotone functions f and g defined on P , f is P -majorized by g if


i∈I

f(i) ≤

i∈I

g(j) for each ideal I in (P,≤P ) (4.2)

with equality when I = P . We then write f P g. We should point out that f P g,
provided that there exists permutations π and π of P , such that fπ P gπ , here fπ is the
composition f ◦ π.

Theorem 4.1 ([1]): Assume that f, g : P → R satisfy f P g. Then f  g (classical
majorization) holds. However, the converse does not hold in general.

Example 4.1: The following figure shows an example with poset P = {1, 2, 3, 4}, and
1 ≤P 2, 1 ≤P 3, 2 ≤P 4, 3 ≤P 4. And the values of f f (= fπ) and g are defined as in
Figure 4.1. It is clear that all f , f  and g are monotone. Also f (1) = 10 ≤ g(1) = 10,
f (1) + f (2) = 10 + 8 ≤ g(1) + g(2) = 10 + 9, in the same way, 10 + 10 ≤ 10 + 10,
10 + 8 + 10 ≤ 10 + 9 + 10, 10 + 8 + 10 + 1 = 10 + 9 + 10 + 0. Therefore, f  P g. Since f 

is a permutation of f , we also have f P g. By above theorem, we have f   g and f  g.
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Figure 4.1. The Hasse diagram of P , and corresponding f P g

To have a more comprehensive understanding of P -majorization, a simple example is
given in [1]. If P consists two incomparable elements, and let f = (1, 1), g = (2, 0). Then
f  g, but f P g/ . Therefore, compare classical majorization, P -majorization is much
strong condition. If all elements are incomparable, then P -majorization forces all elements
of both functions taking same value.

Now we show OWA optimization problem related to majorization for partially ordered
sets.

Let Rn
P denote the set of P -monotone vectors in Rn and b = (b1, b2, · · · , bn) ∈ Rn

P , the
set of P -monotone vectors that are P -majorizated by b is [1],

PM(b) = {x ∈ Rn
P : x P b}. (4.3)

Now, let us consider following optimization problems.

max
n

j=1

wjxj s. t. x ∈ PM(b). (4.4)

Although, the vertex set (4.3) has been characterized in [1], within each block, the value
is not simple average, also no weighted average as in the case of principal majorization

4

. 
Therefore, compare classical majorization, P-majorization is much strong condition. If all elements are 
incomparable, then P-majorization forces all elements of both functions taking same value. 

We restrict the problem on M(b) because it is convenient when consider the structure of
optimal solution.

The optimization problem is trivial if w is Schur-convex, i.e., wTx ≤ wTy whenever
x  y, b is an optimal solution.

Note also that optimization problem

max
n

j=1

wjxj s. t. x  b (3.5)

can be achieved by greedy algorithm. It is also the result of submodular property ([4]). If
w1 ≥ w2 ≥ · · · ≥ wn, above problems are coincided, the solution is bπ, which is a permu-
tation of b such that b1 ≥ b2 ≥ · · · ≥ bn

G. Dahl ([2]) investigated the extreme points structure of M(b). To avoid some techni-
cals, b is assumed to satisfy b1 > b2 > · · · > bn. Note M(b) is determined by two sets of
inequalities, the majorization inequalities (2.1) and (2.2), ordered inequalities (2.4). The
elements (x1, x2, · · · , xn) of extreme point x is partitioned into some ordered blocks, blocks
are separated when majorization inequalities take equalities. Within each block, ordered
inequalities take equalities, i.e., elements in each block have same value.

The following notation is the weight averaged on a block having indexes from i to j
(1 ≤ i ≤ j ≤ n) of an extreme point in M(b),

ŵi,j = (1/(j − i + 1))

j
k=i

wk

j
r=i

br. (3.6)

A dynamic programming is also given (here w are arbitrary weights, i.e., we do not need
that wi ≥ wj whenever i < j):

Dynamic Algorithm for M(b)
1. Let µ0 = 0.
2. For k = 1, 2, · · · , n calculate µk = max{µt−1 + ŵt,k : t = 1, 2, · · · , k}.

µn is the required optimization value. (The above DP is given in [2], we correct some
misprints.)

Note also that if w1 ≤ w2 ≤ · · · ≤ wn, i.e., Schur concave function, only one block, the
optimal solution is: all components are equal to 1/n

n
j=1 bj.

4. Majorization for partially ordered sets

Recently more general partially ordered sets related to maorization has been researched
([1]). We first give the definition and review the main results.

Consider a partially set (poset) (P,≤P ) on a set wirh n elements. A linear extension of
P is a linear order ≤L (on P ) such that if i ≤P j then i ≤L j. An ideal of poset (P,≤P )
is a set I ⊆ P such that a ∈ I and b ≤P a implies b ∈ I. And a real-valued function f
defined on P is P -monotone if

f(i) ≥ f(j) whenever i ≤P j. (4.1)

3
For two P -monotone functions f and g defined on P , f is P -majorized by g if


i∈I

f(i) ≤

i∈I

g(j) for each ideal I in (P,≤P ) (4.2)

with equality when I = P . We then write f P g. We should point out that f P g,
provided that there exists permutations π and π of P , such that fπ P gπ , here fπ is the
composition f ◦ π.

Theorem 4.1 ([1]): Assume that f, g : P → R satisfy f P g. Then f  g (classical
majorization) holds. However, the converse does not hold in general.

Example 4.1: The following figure shows an example with poset P = {1, 2, 3, 4}, and
1 ≤P 2, 1 ≤P 3, 2 ≤P 4, 3 ≤P 4. And the values of f f (= fπ) and g are defined as in
Figure 4.1. It is clear that all f , f  and g are monotone. Also f (1) = 10 ≤ g(1) = 10,
f (1) + f (2) = 10 + 8 ≤ g(1) + g(2) = 10 + 9, in the same way, 10 + 10 ≤ 10 + 10,
10 + 8 + 10 ≤ 10 + 9 + 10, 10 + 8 + 10 + 1 = 10 + 9 + 10 + 0. Therefore, f  P g. Since f 

is a permutation of f , we also have f P g. By above theorem, we have f   g and f  g.
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Figure 4.1. The Hasse diagram of P , and corresponding f P g

To have a more comprehensive understanding of P -majorization, a simple example is
given in [1]. If P consists two incomparable elements, and let f = (1, 1), g = (2, 0). Then
f  g, but f P g/ . Therefore, compare classical majorization, P -majorization is much
strong condition. If all elements are incomparable, then P -majorization forces all elements
of both functions taking same value.

Now we show OWA optimization problem related to majorization for partially ordered
sets.

Let Rn
P denote the set of P -monotone vectors in Rn and b = (b1, b2, · · · , bn) ∈ Rn

P , the
set of P -monotone vectors that are P -majorizated by b is [1],

PM(b) = {x ∈ Rn
P : x P b}. (4.3)

Now, let us consider following optimization problems.

max
n

j=1

wjxj s. t. x ∈ PM(b). (4.4)

Although, the vertex set (4.3) has been characterized in [1], within each block, the value
is not simple average, also no weighted average as in the case of principal majorization
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For two P -monotone functions f and g defined on P , f is P -majorized by g if


i∈I

f(i) ≤

i∈I

g(j) for each ideal I in (P,≤P ) (4.2)

with equality when I = P . We then write f P g. We should point out that f P g,
provided that there exists permutations π and π of P , such that fπ P gπ , here fπ is the
composition f ◦ π.

Theorem 4.1 ([1]): Assume that f, g : P → R satisfy f P g. Then f  g (classical
majorization) holds. However, the converse does not hold in general.

Example 4.1: The following figure shows an example with poset P = {1, 2, 3, 4}, and
1 ≤P 2, 1 ≤P 3, 2 ≤P 4, 3 ≤P 4. And the values of f f (= fπ) and g are defined as in
Figure 4.1. It is clear that all f , f  and g are monotone. Also f (1) = 10 ≤ g(1) = 10,
f (1) + f (2) = 10 + 8 ≤ g(1) + g(2) = 10 + 9, in the same way, 10 + 10 ≤ 10 + 10,
10 + 8 + 10 ≤ 10 + 9 + 10, 10 + 8 + 10 + 1 = 10 + 9 + 10 + 0. Therefore, f  P g. Since f 

is a permutation of f , we also have f P g. By above theorem, we have f   g and f  g.
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Figure 4.1. The Hasse diagram of P , and corresponding f P g

To have a more comprehensive understanding of P -majorization, a simple example is
given in [1]. If P consists two incomparable elements, and let f = (1, 1), g = (2, 0). Then
f  g, but f P g/ . Therefore, compare classical majorization, P -majorization is much
strong condition. If all elements are incomparable, then P -majorization forces all elements
of both functions taking same value.

Now we show OWA optimization problem related to majorization for partially ordered
sets.

Let Rn
P denote the set of P -monotone vectors in Rn and b = (b1, b2, · · · , bn) ∈ Rn

P , the
set of P -monotone vectors that are P -majorizated by b is [1],

PM(b) = {x ∈ Rn
P : x P b}. (4.3)

Now, let us consider following optimization problems.

max
n

j=1

wjxj s. t. x ∈ PM(b). (4.4)

Although, the vertex set (4.3) has been characterized in [1], within each block, the value
is not simple average, also no weighted average as in the case of principal majorization
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Figure 4.1. The Hasse diagram of P, and corresponding

For two P -monotone functions f and g defined on P , f is P -majorized by g if


i∈I

f(i) ≤

i∈I

g(j) for each ideal I in (P,≤P ) (4.2)

with equality when I = P . We then write f P g. We should point out that f P g,
provided that there exists permutations π and π of P , such that fπ P gπ , here fπ is the
composition f ◦ π.

Theorem 4.1 ([1]): Assume that f, g : P → R satisfy f P g. Then f  g (classical
majorization) holds. However, the converse does not hold in general.

Example 4.1: The following figure shows an example with poset P = {1, 2, 3, 4}, and
1 ≤P 2, 1 ≤P 3, 2 ≤P 4, 3 ≤P 4. And the values of f f (= fπ) and g are defined as in
Figure 4.1. It is clear that all f , f  and g are monotone. Also f (1) = 10 ≤ g(1) = 10,
f (1) + f (2) = 10 + 8 ≤ g(1) + g(2) = 10 + 9, in the same way, 10 + 10 ≤ 10 + 10,
10 + 8 + 10 ≤ 10 + 9 + 10, 10 + 8 + 10 + 1 = 10 + 9 + 10 + 0. Therefore, f  P g. Since f 

is a permutation of f , we also have f P g. By above theorem, we have f   g and f  g.
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Figure 4.1. The Hasse diagram of P , and corresponding f P g

To have a more comprehensive understanding of P -majorization, a simple example is
given in [1]. If P consists two incomparable elements, and let f = (1, 1), g = (2, 0). Then
f  g, but f P g/ . Therefore, compare classical majorization, P -majorization is much
strong condition. If all elements are incomparable, then P -majorization forces all elements
of both functions taking same value.

Now we show OWA optimization problem related to majorization for partially ordered
sets.

Let Rn
P denote the set of P -monotone vectors in Rn and b = (b1, b2, · · · , bn) ∈ Rn

P , the
set of P -monotone vectors that are P -majorizated by b is [1],

PM(b) = {x ∈ Rn
P : x P b}. (4.3)

Now, let us consider following optimization problems.

max
n

j=1

wjxj s. t. x ∈ PM(b). (4.4)

Although, the vertex set (4.3) has been characterized in [1], within each block, the value
is not simple average, also no weighted average as in the case of principal majorization
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The property of 

ideal. Therefore for general problem (4.4), developing an efficient algorithm seems diffi-
culty.

As mentioned above, if all elements of P are incomparable, PM(b) reduced to one point.
Therefore, the structure of P plays one key point on the complexity of (3.4).

The property of w also affects the complexity of problem. If w is Schur-convex, by
Theorem 4.1, b is the optimal solution.

What exactly Schur-convex function means in partially ordered set, the difference be-
tween w ∈ PM(b) and P -monotone w. What exactly permutation or symmetry means
here, or at what condition, problem (4.4) coincides with problems (3.3) and (3.4). Of
course, generally, the value of (3.4) is larger than (4.4).

5. General ordered weighted problems

As mentioned in Introduction, values in problems titled with OWA vary without symmetry.
Paper [3] begins an example as follows.

Example 5.1: Consider

Q = {x ∈ {0, 1}3 : x1 + x2 + x3 = 2}, C =




1 4 1
1 1 3
5 1 2


 and ω = (1 2 4).

Let y = Cx, and π be a permutation such that y1 ≥ · · · ≥ yn with an appropriate index n.
Here w is parameter of objective function for ordered values. Table 5.1 illustrates for each
feasible x ∈ Q, the corresponding y, yπ and the values of OWA = ωyπ.

Table 5.1: Solutions x, values y = Cx, sorted values yπ and ωyπ
x y yπ ωyπ = OWA(C,ω)(x)
(1 1 0) (5 2 6) (6 5 2) 24
(1 0 1) (2 4 7) (7 4 2) 23
(0 1 1) (5 4 3) (5 4 3) 25

The OWA optimization Problem (OWAP) is

OWAP : min
x∈Q

OWA(C,ω)(x) = min
x∈Q

ω(Cx)π. (5.1)

The above OWAP is an integral programing problem, and it has been shown that its
complexity is NP -hard in general ([3]). The OWAP related to OM problem is also given in
([3]). OWAP and OM has applications in allocation and other fields ([3]). Note in Example
5.1, y is not symmetric with permutation of elements x.

A well known result in majorization is Px  x if P is double stochastic matrix, i.e., all
elements are non-negative and the summation of each row and column is equal to 1. What
happens if C of OWAP is double stochastic matrix will be our next works.
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feasible x ∈ Q, the corresponding y, yπ and the values of OWA = ωyπ.

Table 5.1: Solutions x, values y = Cx, sorted values yπ and ωyπ
x y yπ ωyπ = OWA(C,ω)(x)
(1 1 0) (5 2 6) (6 5 2) 24
(1 0 1) (2 4 7) (7 4 2) 23
(0 1 1) (5 4 3) (5 4 3) 25

The OWA optimization Problem (OWAP) is

OWAP : min
x∈Q

OWA(C,ω)(x) = min
x∈Q

ω(Cx)π. (5.1)

The above OWAP is an integral programing problem, and it has been shown that its
complexity is NP -hard in general ([3]). The OWAP related to OM problem is also given in
([3]). OWAP and OM has applications in allocation and other fields ([3]). Note in Example
5.1, y is not symmetric with permutation of elements x.

A well known result in majorization is Px  x if P is double stochastic matrix, i.e., all
elements are non-negative and the summation of each row and column is equal to 1. What
happens if C of OWAP is double stochastic matrix will be our next works.
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For two P -monotone functions f and g defined on P , f is P -majorized by g if


i∈I

f(i) ≤

i∈I

g(j) for each ideal I in (P,≤P ) (4.2)

with equality when I = P . We then write f P g. We should point out that f P g,
provided that there exists permutations π and π of P , such that fπ P gπ , here fπ is the
composition f ◦ π.

Theorem 4.1 ([1]): Assume that f, g : P → R satisfy f P g. Then f  g (classical
majorization) holds. However, the converse does not hold in general.

Example 4.1: The following figure shows an example with poset P = {1, 2, 3, 4}, and
1 ≤P 2, 1 ≤P 3, 2 ≤P 4, 3 ≤P 4. And the values of f f (= fπ) and g are defined as in
Figure 4.1. It is clear that all f , f  and g are monotone. Also f (1) = 10 ≤ g(1) = 10,
f (1) + f (2) = 10 + 8 ≤ g(1) + g(2) = 10 + 9, in the same way, 10 + 10 ≤ 10 + 10,
10 + 8 + 10 ≤ 10 + 9 + 10, 10 + 8 + 10 + 1 = 10 + 9 + 10 + 0. Therefore, f  P g. Since f 

is a permutation of f , we also have f P g. By above theorem, we have f   g and f  g.
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Figure 4.1. The Hasse diagram of P , and corresponding f P g

To have a more comprehensive understanding of P -majorization, a simple example is
given in [1]. If P consists two incomparable elements, and let f = (1, 1), g = (2, 0). Then
f  g, but f P g/ . Therefore, compare classical majorization, P -majorization is much
strong condition. If all elements are incomparable, then P -majorization forces all elements
of both functions taking same value.

Now we show OWA optimization problem related to majorization for partially ordered
sets.

Let Rn
P denote the set of P -monotone vectors in Rn and b = (b1, b2, · · · , bn) ∈ Rn

P , the
set of P -monotone vectors that are P -majorizated by b is [1],

PM(b) = {x ∈ Rn
P : x P b}. (4.3)

Now, let us consider following optimization problems.

max
n

j=1

wjxj s. t. x ∈ PM(b). (4.4)

Although, the vertex set (4.3) has been characterized in [1], within each block, the value
is not simple average, also no weighted average as in the case of principal majorization
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To have a more comprehensive understanding of P -majorization, a simple example is
given in [1]. If P consists two incomparable elements, and let f = (1, 1), g = (2, 0). Then
f  g, but f P g/ . Therefore, compare classical majorization, P -majorization is much
strong condition. If all elements are incomparable, then P -majorization forces all elements
of both functions taking same value.

Now we show OWA optimization problem related to majorization for partially ordered
sets.

Let Rn
P denote the set of P -monotone vectors in Rn and b = (b1, b2, · · · , bn) ∈ Rn

P , the
set of P -monotone vectors that are P -majorizated by b is [1],

PM(b) = {x ∈ Rn
P : x P b}. (4.3)

Now, let us consider following optimization problems.

max
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j=1

wjxj s. t. x ∈ PM(b). (4.4)

Although, the vertex set (4.3) has been characterized in [1], within each block, the value
is not simple average, also no weighted average as in the case of principal majorization

4
ideal. Therefore for general problem (4.4), developing an efficient algorithm seems diffi-
culty.

As mentioned above, if all elements of P are incomparable, PM(b) reduced to one point.
Therefore, the structure of P plays one key point on the complexity of (3.4).

The property of w also affects the complexity of problem. If w is Schur-convex, by
Theorem 4.1, b is the optimal solution.

What exactly Schur-convex function means in partially ordered set, the difference be-
tween w ∈ PM(b) and P -monotone w. What exactly permutation or symmetry means
here, or at what condition, problem (4.4) coincides with problems (3.3) and (3.4). Of
course, generally, the value of (3.4) is larger than (4.4).

5. General ordered weighted problems

As mentioned in Introduction, values in problems titled with OWA vary without symmetry.
Paper [3] begins an example as follows.

Example 5.1: Consider

Q = {x ∈ {0, 1}3 : x1 + x2 + x3 = 2}, C =




1 4 1
1 1 3
5 1 2


 and ω = (1 2 4).

Let y = Cx, and π be a permutation such that y1 ≥ · · · ≥ yn with an appropriate index n.
Here w is parameter of objective function for ordered values. Table 5.1 illustrates for each
feasible x ∈ Q, the corresponding y, yπ and the values of OWA = ωyπ.

Table 5.1: Solutions x, values y = Cx, sorted values yπ and ωyπ
x y yπ ωyπ = OWA(C,ω)(x)
(1 1 0) (5 2 6) (6 5 2) 24
(1 0 1) (2 4 7) (7 4 2) 23
(0 1 1) (5 4 3) (5 4 3) 25

The OWA optimization Problem (OWAP) is

OWAP : min
x∈Q

OWA(C,ω)(x) = min
x∈Q

ω(Cx)π. (5.1)

The above OWAP is an integral programing problem, and it has been shown that its
complexity is NP -hard in general ([3]). The OWAP related to OM problem is also given in
([3]). OWAP and OM has applications in allocation and other fields ([3]). Note in Example
5.1, y is not symmetric with permutation of elements x.

A well known result in majorization is Px  x if P is double stochastic matrix, i.e., all
elements are non-negative and the summation of each row and column is equal to 1. What
happens if C of OWAP is double stochastic matrix will be our next works.
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ideal. Therefore for general problem (4.4), developing an efficient algorithm seems diffi-
culty.

As mentioned above, if all elements of P are incomparable, PM(b) reduced to one point.
Therefore, the structure of P plays one key point on the complexity of (3.4).

The property of w also affects the complexity of problem. If w is Schur-convex, by
Theorem 4.1, b is the optimal solution.

What exactly Schur-convex function means in partially ordered set, the difference be-
tween w ∈ PM(b) and P -monotone w. What exactly permutation or symmetry means
here, or at what condition, problem (4.4) coincides with problems (3.3) and (3.4). Of
course, generally, the value of (3.4) is larger than (4.4).

5. General ordered weighted problems

As mentioned in Introduction, values in problems titled with OWA vary without symmetry.
Paper [3] begins an example as follows.

Example 5.1: Consider

Q = {x ∈ {0, 1}3 : x1 + x2 + x3 = 2}, C =




1 4 1
1 1 3
5 1 2


 and ω = (1 2 4).

Let y = Cx, and π be a permutation such that y1 ≥ · · · ≥ yn with an appropriate index n.
Here w is parameter of objective function for ordered values. Table 5.1 illustrates for each
feasible x ∈ Q, the corresponding y, yπ and the values of OWA = ωyπ.

Table 5.1: Solutions x, values y = Cx, sorted values yπ and ωyπ
x y yπ ωyπ = OWA(C,ω)(x)
(1 1 0) (5 2 6) (6 5 2) 24
(1 0 1) (2 4 7) (7 4 2) 23
(0 1 1) (5 4 3) (5 4 3) 25

The OWA optimization Problem (OWAP) is

OWAP : min
x∈Q

OWA(C,ω)(x) = min
x∈Q

ω(Cx)π. (5.1)

The above OWAP is an integral programing problem, and it has been shown that its
complexity is NP -hard in general ([3]). The OWAP related to OM problem is also given in
([3]). OWAP and OM has applications in allocation and other fields ([3]). Note in Example
5.1, y is not symmetric with permutation of elements x.

A well known result in majorization is Px  x if P is double stochastic matrix, i.e., all
elements are non-negative and the summation of each row and column is equal to 1. What
happens if C of OWAP is double stochastic matrix will be our next works.
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