
Lot Sizing Problem with Backlogging

Ping Zhan*

1. Introduction

Optimization problems of minimizing costs or maximizing profits in production planning and

economics have been widely studied for a long time. Affluent results not only beauty and pro-

found in mathematics have been obtained, their practical successes in applications are great

achievements.

Lot sizing models were treated almost at the beginnings of operations research and manage-

ment science. With the introduction of Materials Requirement Planning (MRP), or today’s Enter-

prise Resource Planning (ERP) systems and Advanced Planning and Scheduling (APS) systems,

supported by new information technology, lot sizing problems clearly have got some new mean-

ing and attention.

First, unlike many classical production models, they concentrate production functions, lot

sizing models also integrate set-ups and inventory costs, with longer time horizon planning.

These ideas are matching the advanced planning system, or Supply Chain Planning (SCP), which

is the main trend in today’s business management.

Consider mathematical formulations of lot sizing models, production and inventory variables

are usually real numbers, while set-up (or start-up) variables are often binary, which means that

the problems are Mixing Integer Programming (MIP), and it is hard to find an efficient algorithm

in general. Thanks to Traveling Salesman Problem (TSP), one of most intensively studied prob-

lems in optimization, the efforts on TSP attract the research on cutting plane method which

combining other approaches have greatly improved efficiency of solving MIP in last decade, and

make large size MIP more attackable in a reasonable time.

Lot sizing problems are also a very interesting subject for researchers on mathematical

programming. A wide range of theories and algorithms have been applied to find structures of

optimal solutions and to solve them. For example, convex analysis, minimum cost of networks,

madroids and submodular functions, also, dynamic programming, cutting planes.

275

Abstract

Production planning of lot sizing problems was an important subject almost half a century ago,

and still is studied extensively recently. In this manuscript, we formulate the problem and clarify

a condition related and introduce its application.

2009年 11月 27日受付

�江戸川大学 情報文化学科准教授 数理計画

For single item lot sizing models, complete linear description of polyhedra have been known

by introducing cutting planes or variables. Recently the linear description also has been solved

even when demands are violated by backlogging ([1]). Efficient algorithms also be developed to

solving them, especially when lot sizing models are single item and uncapacitated, or constant

capacity and discrete.

On the other side, many problems are remained, one extreme is if capacities of lot sizing

model are time vary, it is NP-hard. And when there are more than two items, especially some

components can be produced only others have been finished, we can only solve these production

planning problems case by case.

In next section, we define notations and give the formulation of lot sizing problems. Section

3 clarifies a condition related to backlogging and Section 4 its application in formulating lot

sizing model. Finally we show an example using branch-and-bound algorithm.

2. Definitions and Preliminaries

Let n be the length of the planning time horizon. For each period ����������the following

data are given:

�� unit production cost in �,

�� unit holding cost in �(defined also for �＝0), ,

�� set-up cost in �,

�� unit backlogging cost (defined also for �＝0),

�� demand in �,

�� production capacity in �.

We suppose all data is nonnegative rational. For easy of presentation, we also denote

	� production in �,

� stock at the end of �(defined also for �＝0),

�� set-up binary variables,

�� total accumulated backlog at the end of �(defined also for �＝0).

Now we can formulate lot sizing model with capacity and backlogging (LSB) :

Here we suppose
�＝0 and ��＝0 for simiplicity.

Replace flow conservation equation (2.2) to (2.1), we can rewritten objective function as

Lot Sizing Problem with Backlogging276

�
�� �
�� �

��

���And variables are defined as follows:

��	�
�

���
���	����
������������ �����

�	��	�	��	�� ���
�	��
���

	 �����

����� 	�
 ����
���

	 �����

	��
����������������
���

	 �����

��	�
�

���
��

�
�
��������

�
������ �

�

���
������ �����

with �
�
�� ����������and �

�
�� �����������where we take �

�
����We say that a problem with

backlogging has Wagner-Whitin costs if �
�
��� for ������������� and �

�
��� for

�����������. Wagner-Whitin condition means that it will be costly for early production when

there are positive stocks and for late production with positive backlogs.

3. Backlogging Conditions

Without other ristrictions, it seems unreasonable for same time period �we have both

��	���	��	��We discuss this in detail.

Suppose ��� ��	�for any time period �, let �
�
�� �����	���

�
�� �� if �
 �and �

�
����

�
�
�� ��if �
 ��then

while flow conservation condition and other nonnegative condition are remained unchanged.

For the case of ��	 ��	��the discussion is the sams as the above.

Summerize above discussion we have following proposition.

Proposition 3.1: For an optimimal solution of problem LSB, we always have a necessary condition.

Note when the problem have Wagner-Whitin costs, we can obtain the same result.

The solution structure of necessary condition can also be explained in following Figure 3.1.,

i.e., there exists no two parallel flows in any one period.

4. Optimization Modeling

In this section, we see how (3.1) is applied to modeling and optimization.

For simplicity, we consider discrete lot sizing problem, i.e., 	��
���for �����������Then,

the flow conservation constraints can be rewritten as

Similarly, if we eliminate the ��variables, the objective function can be written as

Lot Sizing Problem with Backlogging 277

�
�

���
���	������������������ �

�

���
���	����������

�
���

�
����� ���

�
���������

������
���� �� �� �����

����

	�	�

����

	�	�

����

	�	�

Figure 3.1 Structure of an optimal solution of LSB

�
�

��

�
� ����������

Eliminate ��in flow conservation constraints, we have

or by (3.1) we have

Summerize the above discussions, we have

Now we consider the problem with constant capacities, and suppose that �������
�

is the charac-

teristic vector of �� ������������and rephrase the problem,

where �������������The set function has supermodular property, and an efficient greedy

algorithm can be used to solve it ([2]). While the original (BLS) problem is equivalent to

5. Branch-and-Bound Algorithm

Note when ����for �����������, and 	��
����then (LSB) can be simplified as

which is a knapsack problem, and is NP-hard. Therefore, it is almost hopeless to found a good

algorithm for a LSB problem with non-constant capacities.

Here we try to solve (LSB) with a general branch-and-bound algorithm. We suppose

	��
����i.e., the (LSB) is discrete. We reformulate the problem:

And its linear relaxation is:

Lot Sizing Problem with Backlogging278

�
�

���
�����	
���	����
� �

�

���
����	
�
��	����
��

�

�� �

�
���	������

where the constant term is �
�

���

�����

��
 �
�

���

��������

�����
�

���

�������

	
�

�����
���	��
�

���
��

�
���	�

�
���

�

���

�������

	
�
�

�

���
��� ���������

�
��

���
� �
���

�
�
�	 �

���
�
�
��
����������

	
�

��	
�

�����
���	
�

���
�

��	�
�

���
���
�	��
�����	�

�

���
�
�
���

�
�

���

���
 ���

�������
�

��	�
�

���
�����	����	
���

�����
 �
�

���

���� ���	����� ��
�� �� �

�����
�
	��������

�
�

Let �and �� be the values of optmization solutions of DLSB and RDLSB respectively, and

��be the objective value of any feasible solution of DLSB. Then we have

Here we show an example. The time period �is 6, and other data are given in Table 4.1.

First, we obtain ��＝100.72 with optimization solution ��＝(0, 1, 0.44, 0.75, 0, 1). Here we

choose the initial binary �＝(0, 1, 0, 0, 1, 0, 1) by round ��, and obtain ��＝114 with �＝(0, 0, 0, 5, 0, 0)

and �＝(3, 2, 4, 0, 2, 1).

Since ��is not integer, The following branch-and-bound iterations are summerized in Table

4.2 and Table 4.3.

Lot Sizing Problem with Backlogging 279

����
�

���
�	����
���������

���
��� �
�

���
����� ��������� ����� �� ���

���	�
�
���	�
���

�
�

��� �� ��

Table 4.1 Given data

C 5 7 9 12 8 6

d 3 6 2 3 7 5

q 70 20 50 30 40 10

h 1 2 3 2 1 3

b 2 3 6 4 2 4

Table 4.2 Branch-and-bound iterations by depth-first search

Steps � �� ����� branch list

initialization 114 {{��＝0}, {��＝1},

{�
＝0,}, {�
＝1}}

��＝0

�	 ���branch

113 �＝(0.2, 1, 0, 1, 0, 1)

�＝(0, 0, 0, 6, 0, 0)

�＝(2, 1, 3, 0, 1, 0)

{{��＝1}, {�
＝0,}, {�
＝1}

{��＝0, ��＝0}, {��＝0, ��＝1}}

��＝0, ��＝1

�	 ���prune

139.64 {{��＝1}, {�
＝0,}, {�
＝1}

{��＝0, ��＝0}}

��＝0, ��＝0

�	 ���branch

113 �＝(0, 1, 0, 1, 0.1, 1)

�＝(0, 0, 0, 5, 0, 0)

�＝(3, 2, 4, 0, 1, 0)

{{��＝1}, {�
＝0,}, {�
＝1}

{��＝0, ��＝0, ��＝0}

{��＝0, ��＝0, ��＝1}}

��＝0, ��＝0, ��＝1

�
 ��, prune

121.16 {{��＝1}, {�
＝0,}, {�
＝1}

{��＝0, ��＝0, ��＝0}}

��＝0, ��＝0, ��＝0

�� ��, opt.

114 �＝(0, 1, 0, 10, 1)

�＝(0, 0, 0, 5, 0, 0)

�＝(3, 2, 4, 0, 2, 1)

{{��＝1}, {�
＝0,}, {�
＝1}}

In above example, we initialized ��as lower as possible, and therefore there are no need to

update list �when a better ��obtained, it is clear to reach an optimization, we have to iterate four

more steps for breadth-first search.

In each iteration, we optimize the related relaxation problem, equation (3.1) can not be used

as a cutting plane here. Although we have little hope to find a tight characterization of

polyhedra of (DLSB), it is still a challenge to find a good cutting plane.

[1] S. K�u�c�ukyavuz and Y. Pochet: Uncapacitated lot sizing with backlogging: the convex hull, Mathe-

matical Programming 118 (2009) 151�175.

[2] V. Pochet, L.A. Wolsey: Production Planning by Mixed Integer Pregramming, Springer, 2006.

Lot Sizing Problem with Backlogging280

Table 4.3 Branch-and-bound iterations by breadth-first search

Steps � �� ����� branch list �

initialization 114
{{��＝0}, {��＝1},

{��＝0,}, {��＝1}}

��＝0

Z＜{barZ}, branch
113

�＝(0.2, 1, 0, 1, 0, 1)

�＝(0, 0, 0, 6, 0, 0)

�＝(2, 1, 3, 0, 1, 0)

{{��＝1}, {��＝0, }, {��＝1}

{��＝0, ��＝0}, {��＝0, ��＝1}}

��＝1

Z＞{barZ}, prune
129.21

{{��＝0, }, {��＝1}

{��＝0, ��＝0}, {��＝0, ��＝1}}

��＝0

Z＞{barZ}, prune
121.89

{{��＝1}{��＝0, ��＝0},

{��＝0, ��＝1}}

��＝1

Z＜{barZ}, branch
107.44

�＝(0, 1, 0.2, 1, 0, 0.8)

�＝(0, 0, 0, 7, 0, 0)

�＝(3, 2, 2, 0, 0, 0)

{{��＝0, ��＝0}, {��＝0, ��＝1}

{��＝1, ��＝0}, {��＝1, ��＝1}

{��＝1, ��＝0}, {��＝1, ��＝1}

��＝0, ��＝0

Z＜{barZ}, branch
113

�＝(0, 1, 0, 1, 0.1, 1)

�＝(0, 0, 0, 5, 0, 0)

�＝(3, 2, 7, 0, 1, 0)

{{��＝0, ��＝1}

{��＝1, ��＝0}, {��＝1, ��＝1}

{��＝1, ��＝0}, {��＝1, ��＝1}

{��＝0, ��＝0, ��＝0)}

��＝0, ��＝0, ��＝1}}

��＝0, ��＝1

Z＞{barZ}, prune
139.64

{{��＝1, ��＝0}, {��＝1, ��＝1}

{��＝1, ��＝0}, {��＝1, ��＝1}

{��＝0, ��＝0, ��＝0)}

{��＝0, ��＝0, ��＝1}}

��＝1, ��＝0

�
113

�＝(0.2, 1, 0, 1, 0, 1)

�

{{��＝1, ��＝1}

�

References

