
0. Introduction
A reaction-diffusion equation [1,2] is a type of partial 

differential equation. It is used here to examine the time(t) 
series change {A(x,y,z,t)} of the spatial {x,y,z} distribution of 
microbial populations.

Formula (1) is a fl uid advection/diffusion equation, but the 
scalar coefficients {k,f} are constant constants in space. 
Equation (1) holds even when t→ -t, but it cannot be solved 
numerically in the reverse time direction.

Microorganisms are not fl uids, but since their particle size is 
less than 1 μm, they can be approximated as diffusing and 
moving in a fl uid for a short period of time. Its diffusion is 
normally distributed turbulent diffusion. Turbulent diffusion 
also approaches fl uid diffusion if the particle size is small. 
Therefore, we begin our discussion with the advection-
diffusion equation.

∂A(x ,y, z , t) /∂ t ={k(∂2/∂x2+∂2/∂y2+∂2/∂z2)A(x ,y, z , t) + 
f(∂/∂x,∂/∂y,∂/∂z)A(x,y,z,t).   (1)

1. Expression Variant
In biochemistry, there is no use if f is a constant number in 
space, thus, “f”,

f→{f(x,y,z), (∂/∂x+∂/∂y+∂/∂z)f(x,y,z)=0},  (2)
should be. Therefore, the analytical solution of equation (1) is 
unknown. We will proceed with the policy of finding a 
numerical approximate solution.
Formula (1) is fi ne for A() if it is an inorganic particle such as a 
radioactive tracer, but if it is a bioparticle, it is necessary to 
handle the growth and extinction. Bioparticles consume 
resources to grow and disappear. Resource is a general term for 
nutrient salts of microorganisms. Poisons that kill microbes are 
also resources. It is possible that the physical properties of 
resources change from benef icial to toxic at a cer tain 
concentration. The advantage of writing your own program is 

that it naturally prompts you to consider various properties of 
resources.
Considering the resource as an inorganic substance, its spatio-
temporal distribution {R(x,y,z,t)} is expressed by formula (1) 
and {k', f '(x,y,z)}. The prime of the f function means that f≠f ’, 
not the derivative.
T h e a b s e n c e o f t h e c o n d i t i o n (∂ /∂ x +∂ /∂ y +∂ /∂ z)
f'(x,y,z)=div{f'()}=0 is a source such as a hot water spring in 
the deep sea. Because we thought about the case where there is 
However, if the subject is too broad, the discussion will 
diverge, so here we will limit the subject to the growth of 
microorganisms in the animal body and set source=0.

2. Spatial Meshing
Space-time is a continuous infi nite set {x, y, z; t}, but it 

cannot be numerically processed, so it is divided into a network 
(mesh). If we divide the fi nite range [-1μm,+1μm; 1k time 
steps] by 1k (k=1000), we get (10**3)**4=10**12(8TB). It 
would be diffi cult to hold this amount of data in an array. So we 
make the following simplifi cations:
Make space two-dimensional. Do not retain data on the time 
axis. Set the number of divisions to 0.4k*. One type of fl ow 
fi eld f() for resources and microorganisms. The 2D div()=0 
condition calls for unidirectional fl ow in space.
*) Install the language on your PC and try to see how big an 
array can actually be defi ned. This time, I was able to defi ne 8 
4B arrays of 400 x 400 dimensions with gfortran for Windows 
11, memory = 4GB (equipment for training). It can also handle 
future enhancements.

The discrete form of the differential operators are,
(∂/∂x)f(x,y,z)={f(x+1,y,z)-f(x-1,y,z)}/dx; dx=f(x,y,z)-f(x-

1,y,z)=...,    (3A)
(∂2/∂x2)f(x,y,z)={f(x+1,y,z)+f(x-1,y,z)-2f(x,y,z)}/(dx)2,.....
    (3B)
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Abstract:
　We write about programming/coding for practice of partial differential equations.
Partial differential equations express various phenomena; however, due to wide varieties of subjects, there are many approaches reach to solutions. 
General-purpose program products are also commercially available. We believe that making your own is also important from an educational point of 
view.
　Although the approximation level is rough here, we adopt the forward explicit approach whose policy is easy to understand. Then, besides the 
diffusion and advection terms, we add biochemically interesting terms to see how the solution changes.

偏微分方程式の実習用のプログラミング・コーディングについて述べます。
偏微分方程式は拡散などの諸現象を表現する方程式です。しかし対象が多岐にわたるので、解への接近法が複数存在

します。汎用的なプログラム製品も市販されています。我々は、自作するのも教育的観点からは重要と考えています。
ここでは近似レベルは粗いのですが、方針が理解しやすい前進・陽解法を採用します。そして、拡散と移流項の他に、

生化学的に興味深い項を追加して、解の変化を調べます。
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(∂/∂y) is also dx=dy for simplicity. Equation (3A) is an equality, 
but the precision of the equation drops with the magnitude of 
dx(>0). must be used with caution. Common sense says dx=O(-
2). O() is an argument of order, meaning O(-2) ~ 1/100. 2/100 
and 0.5/100 are the same as 1/100.

3. Limitations of results and solutions
In the direction of the time axis, the A(x,y) plane is spaced at 

regular intervals,
IA(i,j)=integer{p*A(x,y)+q},  (4)

As, display the IA() array with offi ce soft. "integer()" is the 
integerizing function. where (p,q) are constants for display 
such that -9 < IA() < 99. A parameter (real number) for display.
Formula (1) sets the initial values of A() and f() at t=0, and 
calculates forward in the direction of t→∞. Therefore, the 
solution error accumulates. Unless the constants and fl ow fi eld 
functions {k,f()} are also less than O(-2), you are mainly 
"calculating the error". You should be careful with the initial 
settings.
"Here, set the space to be fi nite." n=400, A(n,n), t=integer < 
600, center point A(nh,nh), nh=n/2, dx=10/nh.
This setup considers the behavior of microorganisms within a 
two-dimensional plane of ±10 [μm].
The range that can be displayed with formula (4) is about 40 
× 40 mesh, so 40 * (10/200) = 2 [μm] square. It shows the 
vicinity of the center point.

When solving equation (1) in a fi nite space, it is necessary to 
set boundary conditions. Note the limitations of this approach 
to the solution, how far out of the plane are tails of the solution? 
and so on.

4. Trial
4.1 Advective/diffusion dest
Have you actually achieved your goals through numerical 
calculations? Let’s to test. Fig.1* shows the initial distribution 
function of A(), and Fig.2 shows the error in the time series 
obtained by numerically integrating the precision of the second 
partial differential calculation in the difference form over the 
entire diffusion fi eld. Fig.3 shows the plan view when it is 
diffused to "t=500". Integrating A() over the whole space is 
39.3(t=0 and t=500). Even if the peak value becomes smaller 
due to diffusion, the total amount of A() is preserved. From 
these fi gures the programming and calculation of the diffusion 
term is reasonable.
*) The horizontal axis in Fig.1 is the x value. In this 
calculation, dx=0.1, so it is the mesh range of A(center±
10,0,0). In Fig.2, Gaussian distribution A() is certainly 
diffused.
Next, Fig. 4 shows the result of adding a constant fl ow parallel 
to the x-axis in a space of y > 200 mesh. Even if we add the 
advection term, the integral of A() over the whole space is 
39.3(t=0 and t=500). Even if the shape of A() changes due to 
advection, the total amount of A() is preserved. As mentioned 
above, this program obtained reasonable results in the 
advection-diffusion test.

Fig.3 Distribution of A(x,y,t=500).

Fig.4 A(x,y,t=500) under diffuse and fl ow for x-direction.

4.2 Branch test
Set the branch f low as shown in Fig.5,6. Fig.7 shows 

changes in the value of ∫A()dxdy, and Fig.8 shows A() at 
t=150. Figs.5 and 6 show a fl ow parallel to the x-axis of “+9'' 
from left to right and with a width of 3 meshes, which diverges 
in ±45deg directions at the center point. The y-axis fl ow is 
globally 0 as a vector. It is 4 and 5 because it is a single digit 
display. Strictly speaking, A() of div()~O(-4) is generated 
instead of div()=0 (Fig.7). Fig.8 is a snap shot at t=150. The 
situation where the Gaussian distribution in Fig.1 is diffused 
and diverged is expressed. In biology, it is important where in 
space the distribution intensity is.
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Fig.5,6 Flow of x,y-directions. It branches at the center point.

Fig.7 Changes of integrals of A(). When numerically solving a 
differential equation with a fi nite-difference approximation 
using meshes, errors are transiently visible when the high-
valued points spread over a narrow range.

Fig.8 Distribution of A(x,y,150).

5. Add Logistic Map Term
"A( ) = c on s t a n t " so f a r. I f we t h i n k of A( ) a s t he 
microorganism dist r ibution, it increases or decreases 
depending on time t and resource distribution R(x, y, t). 
Resources also advect-diffusion. We need a different 
advection-diffusion equation than A(). The solution of the two 
equations is
Y(x,y,t)={A(x,y,t+1),R(x,y,t+1)};
Y(x,y,t+1)=kY(x,y, t){1-Y(x,y,t)},    (5)
A logistic map (discrete logistic equation) is known, on which 
the description on the Japanese version [3] of Wikipedia is 
helpful for understanding the property.
There, it is stated that it is a formula for the number of 
individuals when "organisms live in the environment and there 
is no movement of individuals between the environment and 
the outside".

This map generates chaos depending on the value of the 
coeffi cient k. Here, we recognize the biological signifi cance of 
this mapping and use it as a recurrence formula that expresses 
the number of living organisms.
Until now, dx = 1/20, but from now on, dx = 1/5, which is 4 
times the 8 x 8 [μm] plane. Adopt a wide range of space even if 
the accuracy is reduced.
Equation (5) is

A(x,y,t+1)=A(x,y,t)R(x,y,t),   (6A)
w=R(x,y,t)-mA(x,y,t);
if(w>0)R(x,y,t+1)=w, else A(x,y,t+1)=0,  (6B)

and transform. If k=1 in the original formula, it quickly 
converges to A()=0.
Formula (6) expresses the situation where m resources are 
consumed and A() increases or decreases in proportion to the 
population of A(). If the resources in a mesh become 0, the 
population of that mesh dies. R() does not change. Therefore, 
when t→∞, the number of individuals becomes 0.
Ca lcu la t e t he d ive rgent advec t ion a nd d i f f u sion of 
microorganisms under the condition of uniform resource 
distribution in all spaces and no advection-diffusion of 
resources.

Fig.9 Total mass change in A(..,t) up to t<29. Consuming the 
resource in a plane, total mass changes from 39.3 to 6.23. 
Using parameters: m=+1/39.3, R(x,y,t=0)=1, d if fused 
parameter k=1/1000 in the plane, f low parameters are in 
Fig.5,6.  
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Fig.10 Snap shots of A(x,y,t=29,59,89), in which the mass of 
A() are 6.23, 2.31, 1.41, respectively.
The change depends on a parameter “m=1/39.3” used in Fig.9.
Distribution of microorganisms that advect and diffuse while 
consuming resources along the fl ow that diverges at an angle of 
45 degrees from the central point.

If Parameter “m” is positive, microorganisms will decrease, 
and if negative, they will proliferate. There is no m<0 in 
reality, and when m=-0.01/39.3<0 in the simulation, A() 
changes from 39.3→42.1→48.3.

Returning to the original Logistic mapping formula, when 
the resource is 0, A() = 0 & R() = A(). Consider the case where 
resources are circulating in the form of microorganisms.

We set,
w=A(x,y,t)R(x,y,t),   (7A)
A(x,y,t+1)=k*w*(1-w),   (7B)
w2=R(x,y,t)-A(x,y,t),
if(w2>0)R(x,y,t+1)=w2, else A(x,y,t+1)=0, 

R(x,y,t+1)=A(x,y,t),    (7C)
Moving the k value in equation (7B) from 1.01 to 1.06 gives 
Figure 11.

Fig.11 Change of A(x,y,t) under k=1.04~1.06. Increasing the k 
value in Eq. (7B) results that is faster proliferation, but 
resource shortages lead to early extinction. It did not become 
extinct until t=1.5k under reasonable diffusion rate (k=1.01).

Conclusion:
We introduce a programming example of the reaction-

diffusion equation. We add the logistic map term as a reaction 
of microorganisms, modify it, and simulate the growth and 
extinction process of microbial assemble. A logistic map is 
characterized by a single scalar parameter. In this simulation, 
we set uniform resources for whole space and simplified  
microbial growth process (close to the original map), but due to 
the action of advection-diffusion terms, the growth and 
destruction became complicated. Reaction-diffusion equation 
is an equation with a potential that expresses microbial growth 
and destruction in user designed resource-space.
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捕捉：
Biochemical implications of this calculation:

With minor viral illnesses such as the common cold, your 
throat will be sore fi rst, and as the cold progresses, your nose 
may become stuffy. The stuffy nose will eventually improve, 
and before you know it, you'll be completely healed.
Describe the progression of these symptoms.

この計算の生化学的意味 :
風邪などの軽度のウイルス性疾患では、まず喉が痛くなり、風
邪が進行すると鼻が詰まることがあります。 
鼻づまりはやがて改善し、いつの間にか完治する。これらの症
状の進行（炎症部の動き）について説明しています。
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