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0. Introduction

Virus diffusion in the air is turbulent diffusion, unlike fl ux 

(heat, etc.) diffusion. In the body, it is contact and 

infi ltration to body tissues, advection through body fl uid 

tracts, and invasion into landed cells.

The diffusion of fi ne dust in the air can be described by the 

advection-diffusion equation. Since the size of virus is 

same size of fi ne dust, the behavior of virus population can 

be described by the convection-diffusion equation in the 

atmosphere.

In the body, if the virus keeps particle character, it could be 

described by the convection-diffusion equation.

However, when the virus invades the cell and proliferates, it 

must add a growth formula term. It is a reaction / 

convection-diffusion equation.

1. Theory

The phenomenon that RNA (ribonucleic acid) virus 

propagates and spreads in a human population is discussed 

based on the partial differential equation. When the genetic 

information is RNA, the probability of mutation is high [1]. 

Therefore, the mutation phenomenon must be considered in 

the proliferation equation.

The virus spreads depends on peoples’ fl ow. Therefore, we 

make discussions based on a convection-diffusion equation 

(1). In the virus diffusion phenomenon inside human body, 

advection terms of the convection-diffusion equation has a 

large effect.

The properties of various organs inside human body affect 

viral replication. Originally, these should be taken into 

consideration. However, that consideration results in huge 

computational time. The adequacy of organ parameter 

settings also needs to be discussed.

In this paper, the proliferation coeffi cient is a 

spatiotemporal vector in the original expression, but after 

Eq.(2), it is simplifi ed to a scalar coeffi cient. It's a 

simplifi cation that is unavoidable with current PC specs.

¶C(x,t)/¶t=K(x,t)¶2
C(x,t)/¶x

2
+L(x,t)¶C(x,t)/¶x, (1)

Here, C (x, t) is the amount of virus [numbers / unit 

volume], {x} is the n-dimensional spatial variable [unit 

length], {t, 0 <t} is the elapsed time [unit time],

K (x, t) is the diffusion coeffi cient vector [none], and L (x, t) 

is the advection coeffi cient vector [none].

Equation (1) is L () = 0, K = const., 

¶C(x,t)/¶t=K¶2
C(x,t)/¶x

2
.  (2)

That is often solved. As an example: Thermal diffusion 

phenomenon. The general solution is,

C(x,t)=η∫[-∞,∞]C(y,0)exp{(x-y)
2
/(4Kt)}dy, 

η=1/{2(πKt)
0.5

}. (3)

The solution saves the quantity of the initial value C (x, 0). 

If C (x, 0) = delta function, then C (x, t) is Gaussian [2].

The virus initially propagates according to the following 

equation.

¶C(x,t)/¶t=M・C(x,t), M=const. > 0. (4)

However, the growth medium is fi nite. Therefore, in the 

long run,

¶C(x,t)/¶t={N-C(x,t)}・M・C(x,t), N=Medium volume. (5)

If M = 1 and N = 1, Eq. (5) gives a sigmoid function.

We link Eqs.(1 & 5), and get;
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¶C’(x,t)/¶t=K(x,t)¶2
C(x,t)/¶x

2
+L(x,t)¶C(x,t)/¶x,

¶C(x,t)/¶t={N(x,t)-C’(x,t)}・M・C’(x,t), M=scalar constant. 

 (6)

This is a "potential" equation that describes the 

phenomenon in which a virus propagates, spreads, and 

advects in a medium. This is one of the reaction-diffusion 

equations [3]. The theoretical solution of Eq. (6) is 

unknown. We divide the space-time by meshes, and we 

approach an approximate solution by simulation.

If the variant virus shares the growth resource (ribosome 

etc.) written N (), we get the following equation;

¶C’(x,t)/¶t={N(x,t)-C’(x,t)-C”(x,t)}・M・C’(x,t), 

¶C”(x,t)/¶t={N(x,t)-C’(x,t)-C”(x,t)}・M”・C”(x,t), M”≠M, 

 (7)

Eq.(7; Cf. Reference [6] & appendix 1) is an equation that 

expresses the growth of two kinds of viruses. The 

advection-diffusion of 2 viruses are 2 equations 

independently. The equation can also be used to investigate 

the action of drugs that suppress virus production.

The actions of drugs directly and antibodies accessed to 

viruses are;

¶C’(x,t)/¶t={N(x,t)-C’(x,t)}・M・C’(x,t), 

¶C”’(x,t)/¶t=ρC’(x,t)C”(x,t), 

C(x,t)=C”’(x,t), ρ=scalar const. <<1. (8)

The formalism of “¶C’()/¶t=…” is not mathematical; this is 

algorithmic step-wise expression to calculate plural related 

equations.

2. Digitizing equations

2.1 Physical approaches

To discretize equation (6), we formulate physical diffusion 

and advection in 1,2-dimensions.

For diffusion; {C(0,t)=1}→{C(-1,t+1)=p, C(1,t+1)=p, 

C(0,t+1)=1-2p, 0<p<1}.

{C(0,0,t)=1}→{C(-1,0,t+1)=p, C(1,0,t+1)=p, C(0,-1,t+1)=p, 

C(0,1,t+1)=p;

C(-1,-1,t+1)=q, C(-1,1,t+1)=q, C(1,-1,t+1)=q, C(1,1,t+1)=q; 

C(0,t+1)=1-4p-4q, 0<p<1, 0<q<1}. (9)

The K(x,t) term is expressed by {p,q} real numbers in 

Eq.(9). The “0” corresponds “x”. The “1,-1” is neighbor 

mesh for “0th” mesh.

For advection; we get,

{C(0,t)=1}→{C(-1,t+1)=p, C(0,t+1)=1-p, 0<p<1} or

{C(0,t)=1}→{C(1,t+1)=p, C(0,t+1)=1-p, 0<p<1}.

[{C(0,0,t)=1}→{C(-1,0,t+1)=p, C(0,0,t+1)=1-p, 0<p<1} or

{C(0,0,t)=1}→{C(1,0,t+1)=p, C(0,0,t+1)=1-p, 0<p<1}] and

[{C(0,0,t)=1}→{C(0,-1,t+1)=q, C(0,0,t+1)=1-q, 0<q<1} or

{C(0,0,t)=1}→{C(0,1,t+1)=q, C(0,0,t+1)=1-q, 0<q<1}]. 

 (10)

Those (p,q) values are expressed L(x,t) in Eq.(6). There is 

diffusion due to turbulence in the fl ow. We substitute it with 

uniform random numbers (expectation 0).

{p, q}→{p+ρ×random#, q+ρ×random#}, ρ~0.03. (11)

Now consider the conservation mass. In the fi eld of physics, 

“div (C) = 0”, if there is no "welling point" in space. "div()" 

is the divergence operator of vector analysis. When 

simulating a non-reactive tracer such as dust diffusion in 

the atmosphere with the advection-diffusion equation; we 

impose the condition of "div()=0", normally.

In the reaction-diffusion equation, there are the "welling 

points" everywhere in space. Already, addition of the 

random number terms in equation (11) violates the div = 0 

condition. We suppress the violation by  expectation zero. 

The diffusion part has the conservation property.

For virus propagation,

C(x,t+1)=C(x,t)+{1-C(x,t)}・M(x,t)・C(x,t), N=1.

C(x,y,t+1)=C(x,y,t)+{1-C(x,y,t)}・M(x,y,t)・C(x,t), N=1. 

 (12)

The M(x,t) and M(x,y,t) are expressed as M, in Eq.(6). A 

uniform scalar constant M is suffi cient, except for viral 

species that propagate inside special internal organs.

2.2 Algorithm

When the space is 2 dimensions, we let an integer set (i, j) 

be the discretized position coordinates of the {x, y} plane.

2.2.1 Defi nition of the partial differential operator.

We write the adjacent coordinates as; im=i-1,ip=i+1; 

jm=j-1, jp=j+1. We write the diffusion as followings;

{Mass 1 on C(i,j,t)} → {Mass p on C(i,jm,t+1), 

C(im,j,t+1), C(ip,j,t+1), C(i,jp,t+1);

Mass p/√2 on C(im,jm,t+1), 

C(ip,jm,t+1), C(im,jp,t+1), C(ip,jp,t+1);

Mass (1-4p-4p/√2) on C(i,j,t+1)}, 

0<p<<1. (13)

If the diffusion rate P (k, L) is 0 at a movement position (k, 

L), that is, if the place cannot be moved, the movement to 
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that position is stopped. The total amount of movement is 

reduced by the contribution. Thus,  P () values 

determination for 8 moving positions are required at all 

discrete points on the plane.

2.2.2 Defi nition of the partial differential operator for the 

time step.

We defi ne the operation as;

C(i,j,t+1)=C(i,j,t)+{1-C(i,j,t)}MC(i,j,t), M=scalar constant. 

 (14)

The defi nition is valid on P(i,j)≠0. We can introduce an 

expansion, M→M(i,j,t). Such an expanded form may be 

useful for cancer cell proliferation simulation inside human 

body.

When two viruses {C (), Cm ()} compete for the same 

cultured ribosome,

C(i,j,t+1)=C(i,j,t)+{1-C(i,j,t)-Cm(i,j,t)}MC(i,j,t), M=scalar 

constant,

Cm(i,j,t+1)=Cm(i,j,t)+{1-C(i,j,t)-Cm(i,j,t)}Mm×Cm(i,j,t), 

Mm=scalar constant. (15)

If {1-C(i,j,t)-Cm(i,j,t)}<0, we force the value to be 0.

When administering the growth-suppressing drug V (), 

which does not act directly on the virus,

C(i,j,t+1)=C(i,j,t)+{1-C(i,j,t)-Cm(i,j,t)-V(i,j,t)}MC(i,j,t), 

M=scalar constant. (16)

2.2.3 Appearance of mutants.

At the specifi ed time t=T and position (I, J), at the ratio of 0 

<σ << 1,

Cm(I,J,T+1)=σC(I,J,T), C(I,J,T+1)=(1-σ)C(I,J,T). (17)

Usually, we adopt, M<Mm. (18)

3. Results of numerical simulations

3.1 Defi nition of the space.

We use 2 dimensional square space that is {x,y}.

Where “x” is [-200,200; integer], whose structure has the 

square mesh. The “y” direction has same mesh structure.

We set 2 square boxes in the space.

The boxes have centers (-100,0), (100,0). The side length is 

98.

The two boxes are connected by one corridor whose width 

is 10, and the length is 4.

The K(x,t) value inside the boxes is uniform, “0.1”. The K 

value outside the box is 0 (virus does not spread to the 

outside).

It is assumed that the virus of "1" is present in one mesh-

area at the center of left-box and "t = 0". This is the initial 

condition. See our paper on atmospheric images for 

visualization please, of the results [4]. Hereinafter, the 

brightness of each point of images is set in the range of 

[10,255]. The physical quantity and brightness of each 

point have a linear relation.

Figure 0: The maximum brightness of 3-images are 8.2, 4.2, 3.1×10
-5

, respectively. Since there is no proliferation, the virus 

density is reduced by spreading. At t=8/12k, the virus has passed through a corridor and moved to right-box. It will be dark 

and unclear in printed matter.
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3.2 Test0: the case of diffuse only.

We show the results; They are 3 images, which are virus density at "t = 4,8,12k, k=1000".

Figure 1: The maximum brightness of 3-images are 0.046, 0.77, 1.0, respectively. Each snap shot is at t=1, 2, 3k.

It is remarkable difference between plain- and reaction-diffusion systems.

Figure 2: The maximum brightness of 3-images are 0.046, 0.75, 0.93, respectively. Each snap shot is at t=1, 2, 3k.

The mutation location is (-110,10), 10 mesh from the center, southwest direction. The mutation ratio is 0.05.

Old species is displayed by red dots, and the new one is green.

Mutants occur at time t = 200, but at t = 1,2k, their existence is hidden behind the old species and it is not visible.

The existence of a new species can be confi rmed at t = 3k. Through a narrow corridor, the new species will grow twice as fast 

as the old ones, so they will prevail in the 2nd BOX. The simulation shows spread of different types of viruses in different 

countries. It shows that the number of virus strains that grow faster gradually increases.

3.3 Test1: the case of diffuse and proliferation.

We set M=0.005 of Eq.(6) under the same condition of section 3.2. Proliferation speeds up the development of the system, so 

we stop the simulation-time at 3k.
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2. The M value of proliferation is doubled (Mm = 2 * M).

The result is in Figure 2.

Figure 3: The maximum brightness of 3-images are 0.046, 0.62, 0.58, respectively. Each snap shot is at t=1, 2, 3k.

The drug administration time is t = 1.5k, and the injection-mass per time-steps is linear. The injection is left-BOX only, and 

the density is homogeneous. Set to consume 50% of the viral replication resource after 0.5k time-steps, and stop 

administration when 90% of the resource is consumed.

By administration of the drug, virus growth in the left BOX is suppressed. This is refl ected in the maximum brightness value 

(0.93 → 0.58). From the color of distribution, it is effective against the fast-growing mutation virus. Since there is no drug 

administration in right side BOX, new species (green dots) are growing fast.

This result is acceptable because Favipiravir does not have the ability to break down virus; it cannot eliminate virus grown 

before administration.

3.4 Test3: the case of diffuse, proliferation, and mutation.

We check a case where a virus mutates, and two types of viruses coexist and multiply.

Mutation time is t = 200. Characteristics of new species:

1. Requires the same resources as the old one.
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3.5 Test4: Presence of drugs that suppress viral growth.

Several mechanisms are known to suppress viral replication. The virus synthesizes its own protein using ribosome, a protein 

synthesis body of the host cell. Favipiravir is a drug that employs a method which inhibits the mechanism. On our simulation, 

virus growth is expressed by competing growth-resource with virus and the drug. We get followings.

Figure 4: The maximum brightness of 3-images are 2.2, 2.4, 2.3, respectively. Each snap shot is at t=4, 8, 12k.

The mutation was assumed to occur 5% at t = 200, position (-143, -52). The growth rate of the mutant species is twice that of 

old species. The fl ow velocity is 0.05, that is 500 times higher than the diffusion rate (P=10
-4

), so old species in the fl ow path 

are not soon replaced by new species. 

From the channel, it is visualized that the new virus infi ltrates into the tissue due to its rapid proliferation.

Figure 5: The maximum brightness of 3-images are 3.8, 5.5, 7.2, respectively. Each snap shot is at t=4, 8, 12k.

The mutation was assumed to occur 5% at t = 200, position (-143, -52). The growth rate of the mutant species is twice that of 

old species. The fl ow velocity is 500 times higher than the diffusion rate. And uniform number disturbances (ρ=0.03) are 

added per t=10 (total 1.2k times).

As in the previous section, under the disturbance fl ow; old species in the fl ow path are not soon replaced by new species. From 

the channel, it is visualized that the new virus infi ltrates into the tissue due to its rapid proliferation.

We can know the difference of virus species in tissue and channel.

3.6 Test5: Introduction of advection term.

We set an outer frame that surrounds the space with four sides of the 401×1 [dots] mesh.

The virus does not invade the frame. The inside is a closed space completely, and it has K(x,t)=0.0001, homogeneous virus 

diffusion area.

Inside that space, we defi ne a rectangular area, outside 301×121, and inside 281×101 meshes.

We defi ne that there is a fl ow of L (x, t) = 0.05 counterclockwise in this hollow space surrounded by a rectangle with a width 
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of 10 meshes. There is a closed, 10-mesh channel, where there is a fl ow and diffusion phenomenon.

There is one unit amount of virus at one point of the fl ow path, the position (-145, -55). We make it the initial state.

3.7 Test6: Advection and stirring under uniform random numbers.

A uniform random number in [-0.03, 0.03] is added to the two-dimensional fl ow in the x and y directions. The random 

number addition repeats per t=10, where the additive effect closes to 0. Thus; the direction of the fl ow does not change, but the 

fl ow is disturbed.

Figure 6: The maximum brightness of 3-images are 3.8, 4.9, 5.4, respectively. Each snap shot is at t=4, 8, 12k.

The mutation was assumed to occur 5% at t = 200, position (-143, -52). 

The drug is injected from t=4k, and the position (0,-55), one point in the central in low horizontal channel. The injection mass 

is 0.1 per every time steps, total mass is 800. The drug-diffusion rate is twice for the virus (P(i,j)=10
-3

, that is 10 times larger 

than that of Figure 5; To make the drug more effective).

The drug reduces the viral load in the tissue, but does not reduce the virus in the channels. The image of channel is relatively 

bright compared with the tissue; virus is high density. Especially at the corners of the channel, you can see a particularly dense 

virus colony. It is known that coronavirus damages to the vascular system. Those indicates that administration of growth 

inhibitors after infl ammation is less effective.

Figure 7: The maximum brightness of 3-images are 3.8, 4.9, 5.4, respectively. Each snap shot is at t=4, 8, 12k.

The mutation was assumed to occur 5% at t = 200, position (-143, -52). 

The drug is injected from t=4k, and the position (0,-55), one point in the central in low horizontal channel. The injection mass 

is 0.1 per every time steps, total mass is 800. The drug-diffusion rate is twice for the virus (P(i,j)=10
-3

, that is 10 times larger 

than that of Figure 5).

After t = 8k, a dark shadow without virus and infl ammation can be seen on the right side of lower fl ow path. The shadow is the 

effect of antiviral drugs.
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load; If this drug is administered, it will be effective.

That is, it is effective if the drug is spread in the tissue in advance.

On the other hand, as in clinical practice, even if a growth inhibitor is administered after infl ammation occurs, new growth can 

be suppressed, but the virus that has already dispersed and has an adverse effect on tissues cannot be removed. We can’t expect 

the effect.

3.9 Test8: Drug for degrading virus

Currently, such drugs are not found, which directly break down SARS virus. Assuming that the drug has been developed, we 

simulate it. We adopt a virus decomposition formula, C(x,t+1)=C(x,t)-B, B=0.2*C(x,t)V(x,t). Cf. Appendix 1, Eq.(21 & 22). 

Where C() is mass of virus, and V() is mass of the drug on each mesh. “0.2” is the ratio of break down.

3.10 Test9: Innate immunity and the virus

Humans have innate immunity (Immunoglobulin A: IgA) originally [5]; under that situation, we simulate the virus propagates. 

We adopt a following human model.

The body tissue has a thin boundary portion-1 in contact with the input part and a thin boundary portion-2 in contact with the 

exhaust part. Each portion has 0.001, and 0.01 [unit speed], respectively. Potion-2 has 10 times than that of portion-1.  The 

boundary is assumed to be a permeable membrane with a large diffusion coeffi cient.  There is a fl ow path of body fl uid so as to 

be in contact with the permeable membrane. The body fl uid fl ow path circulates at a constant rate and there is turbulent 

diffusion. With this setting, we model the function of discharging foreign substances in body fl uids. 

The fl ow of tissue part is 0.05 in both X and Y directions. There is no turbulence.

The fl ow of input/exhaust parts are 0.05 in X direction with turbulence of 0.03. They have no fl ow for Y direction, but have Y- 

3.8 Test7: Suppressing drug under stirring advection.

Drugs that interfere with virus production are known to be less effective against the coronavirus.

From the simulation of section 3.5 with only the diffusion effect, in the initial stage of high-speed propagation and low viral 

Figure 8: Left: A model of human body; Right: Early virus infection location and distribution of IgA.

The position coordinates in the left and right fi gures have a one-to-one correspondence.

This model consists of 3 parts (outside-air input, body tissue, and exhaust parts). There is a fl ow (0.05 [unit speed*]) from left 

to right in the input/exhaust parts, and there is random number disturbance of expectation 0, section [-0.03,0.03], uniform. 

*) defi nition of the speed: It is expressed as the ratio of mass that moves by one mesh. The “0.05” indicates that 5% moves to 

the adjacent mesh, where "1" is the mass present in one mesh.
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direction's turbulence of 0.03.

The diffusion coeffi cient of input- and tissue parts are 0.001; and the exhaust part is 0.003.

The width of fl uid transport channel is 10 mesh, and the direction of fl ow is indicated by arrows in fi gure-9. The speed of 

transport route is 0.05 and there is a random number disturbance of 0.03.

The innate immunity (IgA) concentration is 0.00001 [unit concentration] in the blue part of the fi gure on the right. Initial 

concentration of the virus is 1; so it is suffi ciently dilute of IgA. Moreover, we set that the effect of eliminating virus is reduced 

to 5% of the multiple value among virus and IgA concentration. The spread of IgA is 0.002 (twice the spread of virus in 

tissues). This setting makes IgA's virus-suppressing effect is very small. If it is enough, the virus does not multiply and the 

Figure 9: Virus distribution at t=2, 4,  6k. 

Initial state of virus distribution:

a: +10 mesh position from the left end, t = 0. The virus distribution that has been advected and spread from a-position is 

displayed in red.

b: Exists from +20 mesh position from the left end, t = 0.2k. The virus distribution is displayed in green.

c: Exists from +55 mesh position (central part of body fl uid tract) from the left end, t = 0.6k. The virus distribution is 

displayed in blue. The virus species at position a~c are the same.

Relationship between distributed intensity and brightness of each color: The square root of intensity is affi ne-transformed into 

the [10,255] interval. Therefore, the low-virus-mass distribution appears to be emphasized.
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[10,255] interval. Therefore, the low-virus-mass 

distribution appears to be emphasized. The emphasis 

method is same as fi gure-9.

In test10, it can be seen how virus debris fragmented by the 

IgA antibody is transported to output channel.

With suffi cient IgA antibody, even if the virus spreads, the 

concentration is not high; hence the concentration of debris 

is high.

4. Quantitatively virus diffusion

We calculate the diffusion of the virus into space, by using 

1-dimensional reaction-diffusion equation.

Figure 11: Virus density in 3 time steps per 300 simulation 

steps.

Virus density is relative intensity for unit=1 at initial origin.

This result indicates that the virus propagates outward from 

the origin as an increasing Gaussian-like wave.

image becomes a dark fi gure.

The virus landing time differs at points (a, b, c), but the spread of body tissues is nearly. Landing on the body fl uid transport 

route reverses the delay of ~600 simulation step time. Viruses are exhausted from both the input and output sides. Coronavirus 

attacks ACE2 (Angiotensin-Converting Enzyme 2) and invades host cells. Since ACE2 is found in various parts of the body, it 

is judged that the diffusion rate differs depending on the invading part if it is far from the body fl uid transport path. So we did 

the test.

3.11 Test10: Traces of virus fragments.

On test 10, under enough concentration of IgA, the trace of virus 

fragments are visualized.

We set the innate immunity (IgA) concentration is 0.01 [unit 

concentration], and the effect of eliminating virus is 25% of the 

multiple value among virus and IgA concentration. Thus, virus 

decomposed effect is 5000 times larger than that of test 9.

Relationship between distributed intensity and brightness of each 

color: The square root of intensity is affi ne-transformed into the 

Figure 10: Virus and fragment’s distribution at t=2, 4,  6k. 

Initial state of virus distribution (see Figure 8):

a: the virus landing point is not used.

b: Exists from +20 mesh position from the left end, t = 0. The virus distribution is displayed in red.

c: Exists from +55 mesh position (central part of body fl uid tract) from the left end, t = 0.4k. The virus distribution is 

displayed in green. The virus species at position b and c are the same.

Concentration of virus fragments: they are displayed by blue. The intensity is accumulated until the simulation end.
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5. Conclusion

We introduced the "reaction-diffusion equation" that has 

the potential to express the growth of microorganisms, 

especially viruses. Instead of a mathematical and 

theoretical explanation of the equation, we introduced how 

to actually solve it in two or more dimensions. Since 

solutions of the equation were not clear on numerical 

indices, we drew the time series to show where the reaction 

occurs in space.

What was shown in our simulation,

(1) If the parameters are selected appropriately, the 

diffusion and suppression of virus can be visualized.

(2) A drug that suppresses virus production is ineffective 

unless it is present at a high density in the space-time of the 

production site. If the drug is administered in high 

concentrations, it can be effective in suppressing the virus.

It implies an adverse effect on protein synthesis mechanism 

of normal human cells.

The parameters have been freely set in order to fi t the 

simulations.

The units is not the units in real world, where units are 

determined biophysicaly.

Results of the paper show the possibility only, that is, such 

phenomenon would be happened, within a country, or 

within a human body.

We do not consider the behavior of persistently infected 

viruses.

The published PDF will be a monochrome image. The 

original drawings are color images. I publish them on my 

blog.
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Appendix 1:

The following equation is known for the proliferation of 

hepatitis C virus.

dT (t) / dt = -βT (t) V (t), (20)

dI (t) / dt = βT (t) V (t) -δI (t), (21)

dV (t) /dt = pI (t) -cV (t).  (22)

Reference [6] does not explain each item, but it is inferred 

from the characteristics of the virus.

T (): Amount of resources for viral growth in host cells,

I (): Amount of virus present in cells,

V (): The amount of virus present outside the cell.

{β, δ, p, c} is a parameter.

Characteristics of the virus described by equations (20-

22):

(1) There are two types of viruses, {I, V}, which are 

described by continuous functions. We have introduced 

analogism into the genetic information, that is, we 

recognize the contribution of peripheral molecular groups 

to the functional expression of the genome. It closes to the 

concept of epigenetics.

(2) The {-δI (t), -cV (t)} term of Eq. (21,22) indicates the 

spontaneous degradation of the virus. There is no 

discussion of this mechanism.

(3) The sign of the βT (t) V (t) term is opposite in equation 

(20,21), and there is no such term in equation (22).

The above speculation was deduced from this feature.

Eq.(7) and Eq.(20) are equivalent. The addition of (21 & 

22) can be introduced as an extension of equation (7).

Equation (20-22) is equations that express the phenomenon 

that 3 quantities {T (), I (), V ()} spontaneously collapse 

when viewed on a long-term scale. Therefore, there is no 

conserved quantity.

付録：　概要・結論
微生物、特にウイルスの増殖を表現する可能性のある「反
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応拡散方程式」を紹介します。 方程式の数学的および理
論的な説明の代わりに、2次元以上で実際に解く方法を紹
介します。 方程式の解は数値指数表示では明瞭でないた
め、時系列を描画して、反応が空間のどこで発生するかを
示します。
本シミュレーションで示されたこと、
(1)

パラメータを適切に選択すれば、ウイルスの拡散と薬剤の
抑制を可視化できる。

(2)

ウイルス産生を抑制する薬剤は、産生場所の時空間に高密
度に存在しないと効果がない。薬剤の高濃度投与は、正
常なヒト細胞のタンパク質合成機構に影響を及ぼすことを
意味する。
本論文は反応・拡散方程式の生物学への応用可能性のみ
を示した。シミュレーション・パラメータの正当性について
は検討していない。


